Performance Improvement in Sugarcane Disease
Classification Using Deep Transfer Learning

Chandana Khatavkar %, Raghavendra R Sedamkar?°, Sujata Alegavi**

Research Scholar, Thakur College of Engineering and Technology, Mumbai, India.
2Professor, Thakur College of Engineering and Technology, Mumbai, India.
3Associate Professor, Thakur College of Engineering and Technology, Mumbai, India.

Y khatavkar.chandana@gmail.com
b yr.sedamkar@thakureducation.org
9 sujata.dubal@thakureducation.org

Abstract. Sugarcane is an important cash crop, which largely contributes in the sugar production globally. However, due its
long growth cycles its yield as well as quality are often affected by various fungal, bacterial and viral diseases. Traditional
disease detection methods completely rely on the human manual inspection, which is prone to errors and time consuming.
Recent advancements in deep learning have improved the capability of automated, image-based plant disease detection. A
detailed review of deep learning and transfer learning techniques for sugarcane leaf disease detection and classification is
provided in this paper. It presents the various methodologies used for sugarcane plant disease detection along with its
performance. Leveraging insights from existing literature, a modified MobileNetV2 architecture is used which embeds a dilated
depth wise separable convolution to elevates feature extraction strength. This method also replaces ReLU activation function
of the traditional MobileNetV2 with swish which helps in better optimization. The model is assessed on a varied, balanced
dataset of sugarcane plant leaf images. It achieves a classification accuracy of 95%, transcending several existing models. The
results show that the enhanced MobileNetV2 is well-suited for effectively detecting and classifying sugarcane plant diseases.
It further provides insight for future research into multimodal inputs and combining environmental parameters for the
development of robust and scalable solutions for better precision agriculture.

INTRODUCTION

Sugarcane is a global cash crop, prized for its high sugar content and is used to produce ethanol, jaggery, bagasse,
and molasses as by product. As the second-largest producer and consumer of sugar, India supports one of the world’s
most extensive agriculture-based industries. The juice from sugarcane has health benefits due to its alkaline properties.
However, industry faces significant challenges as sugarcane diseases frequently endanger the yield and quality of
sugarcane, posing major difficulties for farmers and the stakeholders.

Despite the significant economic value, sugarcane is highly prone to diseases caused by bacteria, fungi, viruses,
and other pathogens. Common diseases affecting sugarcane leaves and stems include mosaic disease, white leaf
disease, red rot, smut, wilt, yellow leaf disease, grassy shoot, red stripe, and rust. Foliar diseases are especially harmful,
resulting in considerable losses in productivity and product quality. Therefore, early detection and accurate
identification are crucial for implementing effective management strategies and minimizing potential damage.

Traditional approach to diagnosing sugarcane leaf diseases usually depend on visual inspections carried out by
agricultural experts. Although traditional manual methods can be somewhat effective, they are generally slow, labour-
intensive, and prone to human errors and subjective judgements. Adopting automated techniques for detecting
sugarcane leaf diseases provides a more efficient, accurate, and reliable solution, significantly improving the precision
and speed of disease identification. Automation in this context offers several significant benefits.

Enhanced accuracy: Traditional disease detection relies on expert assessment, which can be error prone.
Automated systems reduce human intervention, thereby increasing accuracy.

Cost efficiency: Manual crop inspection is resource-intensive, requiring high labour costs and specialized
equipment. Automation provides efficient and cost-effective solutions to these challenges.

Improved monitoring: By leveraging advanced technology, automated sugarcane leaf disease detection enhances
monitoring efficiency, boosts diagnostic accuracy, and optimizes crop management.

The lengthy growth cycle of sugarcane makes timely disease detection crucial. Image processing and deep learning
can identify plant issues by analysing leaf colour, shape, and damage. As climate challenges intensify, deep learning
combined with tools like sensors and drones, enhances crop monitoring, soil analysis, and farm management.
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Although still emerging, these technologies have great potential for early and accurate disease detection, thereby
boosting productivity and food security.

REPORTED WORK
Deep Learning based approach

Deep learning methodologies have revolutionized sugarcane plant disease detection, which offer better accuracy,
automated feature extraction, and scalability as compared to the traditional machine learning methods. Unlike machine
learning models such as Random Forest, SVM, and KNN, which rely on manual feature engineering and handcrafted
segmentation techniques, deep learning models like CNNs, Vision Transformers (ViTs), and hybrid architectures
automatically learn spatial hierarchies and complex patterns from the raw images. By use of this, the dependency on
predefined feature selection is eliminated, making deep learning more robust to variations in lighting, background,
and disease symptoms.

Deep learning-based methodologies have significantly advanced sugarcane plant disease detection by leveraging
powerful convolutional and transformer-based architectures. Various studies have explored deep learning models to
optimize classification accuracy and efficiency. [1] compared multiple CNN architectures, including StridedNet,
LeNet, and VGGNet, on a dataset of 14,725 sugarcane leaf images, with VGGNet achieving the highest accuracy of
95.40%, demonstrating its superior feature extraction capability. Similarly,[2] investigated EfficientNetV1 and
EfficientNetV2 on the Sugarcane Leaf Dataset (6,748 images, 11 disease classes), revealing that EfficientNet-B6
(93.39%) and InceptionV4 (93.10%) performed best, emphasizing the need for architecture-specific optimizations. A
comparative analysis by [3] assessed AlexNet, ResNetl18, VGG19, and DenseNet201 for detecting Red Rot, Red Rust,
Mosaic, and Yellow Leaf Disease on a dataset of 1,990 images, with VGG19 achieving 98.82% accuracy, making it
the most effective model in multi-class classification. Furthermore, [4] developed a self-created dataset-based model
that outperformed VGG19, ResNet50, XceptionNet, and EfficientNet B7, achieving 86.53% accuracy and integrating
the AMRCNN model into a mobile application, ensuring accessibility and real-time disease classification.

Enhancing efficiency,[5] introduced an optimized ShuffleNetV2-based model with ECA attention and
Transformer modules, achieving lightweight mobile deployment with only 0.4MB of parameters and 1.57MB memory
usage. Moreover, [6] presented an explainable Al model that integrates DenseNet with SVM and LIME, providing
visual interpretability to aid farmers in disease classification and pesticide recommendation. Additionally, [7]
evaluated ResNet-50, VGG-16, DenseNet-201, VGG-19, and Inception V3 on a dataset of 2,511 images, where
ResNet-50 (95.69%) and VGG-16 (93.26%) outperformed other models, while Inception V3 (74.88%) exhibited lower
accuracy. These studies collectively highlight advancements in deep learning-driven sugarcane disease detection, with
improvements in accuracy, efficiency, mobile deployment, and interpretability. However, gaps remain in real-time
scalability, dataset diversity, and edge-computing implementation for offline detection, necessitating further research
into lightweight and high-accuracy models tailored for real-world agricultural applications.

Mobile integration has enhanced accessibility, enabling farmers to diagnose diseases using smartphone-based
applications. The development of lightweight and efficient models, such as ShuffleNetV2 and AMRCNN, has
optimized computational resources while maintaining high classification accuracy. Additionally, by combining
explainable Al methods like DNet-SVM: XAI, the model's transparency has been greatly enhanced. This makes it
easier to understand and interpret the decisions behind disease classifications. Furthermore, the implementation of
state-of-the-art CNN architectures has considerably increased the accuracy and reliability of plant disease detection
and classification, ensuring reliable and trustworthy detection in actual agricultural conditions.

Despite these advancements, several challenges persist, hindering the scalability and practical deployment of these
models. A significant limitation is the need for larger and more diverse datasets. Many existing models are trained on
region-specific or laboratory-controlled datasets, which restrict their generalizability across various climatic and
environmental conditions. Also, real-time performance optimization is necessary to enable immediate disease
identification and intervention, particularly for large-scale farming operations. Moreover, the absence of edge
computing-based solutions limits the feasibility of offline disease detection in remote with limited internet
connectivity. Overcoming these challenges through data augmentation, federated learning, and edge Al technologies
will be essential for improving the effectiveness and accessibility of deep learning models in precision agriculture.



Transfer Learning based approach

Transfer learning is an effective approach for plant disease detection. It employs pre-trained deep learning models, where

knowledge acquired from one task one task is applied to improve performance on a related task. It is widely used to improve
classification accuracy for plant disease detection with limited data. It is particularly helpful when labeled images of sugarcane
diseases are scarce. It allows models to learn from larger, related datasets, adapt knowledge and perform effectively on task
with small dataset. This approach eliminates the need for training from scratch, significantly reducing time and computational
costs. It is useful when existing models trained on general plant diseases can be fine-tuned for sugarcane-specific conditions.

TABLE 1. Overview of Deep Learning models utilized in sugarcane plant disease detection across various studies

Ref Dataset Image Classe  Name of Classifier / Model / Performance Methodology
Count Count diseases Algorithm Parameters
[1] Self- 14,725 7 Grassy shoot, Red ~ LeNet Accuracy - 95.40% Employes  three CNN  architectures
collected Rot, Smut, Rust, = VGGNet Accuracy - 93.65% (VGGNet, LeNet, and StridedNet) with data
Yellow Disease,  StridedNet Accuracy - 90.10% augmentation and Adam Optimizer with
Healthy categorical cross-entropy
[2] Publicly 6748 11 Banded Chlorosis,  EfficientNet-B6 Accuracy - 93.39% Employs DL and TL with EfficientNet,
available Brown Rust,  InceptionV4 Accuracy - 93.10% ResNetv2-50, and InceptionV4 models,
Brown Spot, leveraging data augmentation and pre-
Grassy Shoot, trained weights
Pokkah  boeng,
Sett Rot, Smut,
Viral Disease,
Yellow Leaf,
Dried Leaves,
Healthy Leaves
[3] Publicly 1990 4 Red Rot,Red Rust,  AlexNet, Accuracy - 97.06%, Employes CNN architectures with data
available mosaic, VGGI19 Precision - 94.06% augmentation and hyperparameter tuning
Kaggle and yellow leaf  ResNetl8 Accuracy - 98.82% , for enhanced model performance
disease DenseNet201 Precision - 96.77%
Accuracy - 97.21%,
Precision - 90.64%
Accuracy - 97.94% ,
Precision - 94.16%
[4] Public 2569 5 Healthy, Mosaic,  Attention based multi-level Accuracy - 86.53% An attention-based CNN architecture with
Mendeley Redrot, Rust and  residual convolutional channel and spatial attention mechanisms,
[39] Yellow disease neural network leveraging  residual  connections  for
improved feature extraction.
[5] Kaggle 2569 5 Healthy, Mosaic,  ShuffleNetV2 Accuracy - 93.88% Uses ShuffleNetV2 by integrating multi-
Redrot, Rust and scale feature extraction, ECA attention, and
Yellow disease Transformer-based learning, and training on
an augmented dataset.
[6] Plant 14000 5 bacterial DNet-SVM Accuracy - 94 % Feature Extraction using DenseNet201,
Village blight/red  stripe, Sensitivity - 0.94 classifies images with SVM instead of
and wilt, red rot, red Specificity - 0.86 Softmax, and utilizes LIME (Local
Self rust, and sett rot FNR - 0.05, FPR - 0.13  Interpretable Model-Agnostic Explanation)
to provide transparent justifications for
disease predictions
[13] Self- 3000 3 Rust, Smut, and  EfficientNet Accuracy - 94.6% Fine-tuning a pre-trained EfficientNet
collected Leaf Scald model
[14] Public 2521 5 Healthy, Mosaic, = ResNet-50 Accuracy - 95.69% Preprocessing techniques like gamma
Mendeley Redrot, Rust and  VGG-16 Accuracy - 93.26% correction and contrast stretching are
Yellow disease DenseNet-201 Accuracy - 89.62% applied followed by fine-tuning model
VGG-19 Accuracy - 79.62% parameters
Inception V3 Accuracy - 74.88%
[15] Self- 16,800 6 Cercospora Leaf  VGGl16 Accuracy - 98.88% Use of SGD optimizer with varying
collected Spot, ResNetV2-152 Accuracy - 99.23% hyperparameter settings, including epoch
Helminthosporiu AlexNet, Accuracy - 99.24% count, momentum, learning rate, and batch
m Leaf, Rust, Red  InceptionV3 Accuracy - 99.53% size, to optimize classification accuracy.
Dot, Yellow Leaf
Disease, Healthy
[16] Self- 1,828 Sugarcane Smut,  Modified ResNet34 Accuracy - ~94 — 95% Modified ResNet34 with Dual Self-
collected Sugarcane Mosaic F1 Score - ~96% Attention Block (DSAB) for spectral-spatial
Virus feature extraction on high-resolution
hyperspectral image
[17] Self- 3,279 2 Sugarcane smut Enhanced YOLOVS5s Precision: 97.0% lightweight YOLOVS5s-based model
collected Recall: 94.3% (YOLOvVSs-ECCW) designed using

mAP : 97.8%

EfficientNetV2, CBAM, C3STR, and WIoU
loss function



[18] Self- 200 Sugarcane smut ResNet-based CNN with Accuracy -90.86% Employed hyperspectral imaging and a
collected Dual Self-Attention Block F1 Score — 88.51% ResNet-based deep learning model with a
(DSAB) Specificity - 93.64% Dual Self-Attention Block (DSAB)
Sensitivity - 86.79%
[19] Publicly 250 5 Mosaic, Red Rot, VGG16 Accuracy- 90.11% VGG16 model optimized with L2

avaible

Rust, Yellow

regularization and the Adam optimizer.

Leaf, and Healthy

Additionally, transfer learning excels in detecting multiple diseases with subtle visual differences, ensuring better pattern
recognition and classification. By adapting pre-learned knowledge, it enables precise identification of diseased and healthy
leaves, making it an efficient and scalable solution for agricultural disease detection.

Deep learning methodologies have demonstrated superior performance in sugarcane disease detection, particularly through
transfer learning, optimization techniques, and advanced classification models. In [8] modifications to DenseNetl121 and
InceptionV3 with additional layers, batch normalization, dropout, and LASSO regularization significantly improved accuracy,
with InceptionV3 achieving 97% and DenseNet121 reaching 96%, outperforming traditional architectures. Similarly, [9]
validates the effectiveness of transfer learning for sugarcane disease detection on a limited dataset (1,470 images), where
ResNet (91%) outperformed VGG-16 (83%), reinforcing the adaptability of deep learning in agricultural applications. Further
optimization is explored in [10] where a Quantum Behaved Particle Swarm Optimization-based Deep Transfer Learning
(QBPSO-DTL) model achieved 96.25% accuracy by integrating optimal region-growing segmentation, SqueezeNet for
feature extraction, and a Deep Stacked Autoencoder (DSAE) for classification. The use of QBPSO for hyperparameter tuning
further validated the efficiency of the model in fine-tuning deep learning architectures. Similarly, [11] investigates the impact
of activation functions on AlexNet, showing that LeakyReLU improved accuracy to 90.67% compared to ReLU (87.90%),
though at a higher computational cost, emphasizing the trade-off between accuracy and efficiency in deep learning.

In [12] ResNet-50 was utilized as the backbone model, incorporating transfer learning, fine-tuning in TensorFlow, and
data augmentation techniques (Gaussian Blur, brightness adjustment) to enhance classification. Despite achieving an accuracy
of 81.70%, this study highlights the challenges of background segmentation and dataset variability in deep learning-based
disease detection.

Despite these advancements, several challenges remain that hinder the real-time applicability and scalability of these
models. Computational efficiency remains a concern, particularly for resource-constrained environments, as deep learning
models often require high processing power and extended training times. Additionally, dataset limitations, including
insufficient labeled images and variations in environmental conditions, impact model generalization across diverse
agricultural settings. Sensitivity to background noise and variability in leaf textures and lighting conditions further affect the
reliability of disease detection models in real-world applications.

TABLE 2. Overview of Transfer Learning models utilized in sugarcane plant disease detection across various studies

Ref Dataset Image  Classe  Name of Classifier / Model / Performance Methodology
Count  Count _ diseases Algorithm Parameters
[8] Public 2569 5 Healthy, Mosaic,  Regularized  InceptionV3  Precision - 97%, Recall ~ Incorporated nine additional layers, LASSO
Mendeley Redrot, Rust and  Dense-Netl21 -97%, F1 Score - 97%,  regularization, dropout layers,
Yellow disease Accuracy - 97% normalization  techniques, optimization
strategies, and early stopping
Precision - 96%, Recall
-96%, F1 Score - 96%,
Accuracy - 96%
[9] Self - 1470 5 Healthy, Mosaic, VGG-16 Accuracy - 83%  learning rate of 0.005, Adam Optimization
Collected Redrot, Rust and  ResNet Accuracy - 91% algorithm and a batch size
Yellow disease of 32 images.
[10] Self 80 2 Diseased and Non ~ Deep Stacked Autoencoder  Accuracy - 96.25%,
collected diseased (DSAE) SqueezeNet model for efficient feature
extraction and Deep Stacked Autoencoder
(DSAE) for classification
[11] Public 2569 5 Healthy, Mosaic,  AlexNet (activation ~ LeakyReLU -Accuracy  Impact of activation functions on AlexNet's
Mendeley Redrot, Rust and  functions ReLU and - 90.67%  performance in  sugarcane  disease
Yellow disease LeakyReLU) ReLU -Accuracy -  classification, comparing ReLU and
87.90% LeakyReLU.
[12] Public 2569 5 Healthy, Mosaic,  Modified ResNet50 Accuracy - 81.7% Utilizes techniques such as gaussian blur,
Mendeley Redrot, Rust and linear contrast, brightness adjustment, and
Yellow disease additive  gaussian  noise  for data
augmentation.
feature histograms used for feature

extraction




METHODOLOGY

Dataset
This experiment utilized the sugarcane leaf disease dataset [21] which comprises 2,569 RGB images across five
categories: Healthy, Mosaic, Red Rot, Rust, and Yellow Leaf Disease. Captured in Maharashtra, India, the dataset
maintains a balanced distribution among all classes and includes a wide range of visual variations.

TABLE 3. Dataset class labels and no of samples

Class No of samples
Mosaic 511
Red Rot 519

Rust 514
Yellow 505
Healthy 520

Dataset Preprocessing

The dataset was divided using an 80:10:10 ratio for training, validation, and testing to evaluate the model's
performance effectively. All images were resized to 224x224 pixels, to ensure uniformity and consistency. Post
resizing, normalization is applied, pixel values are normalized to scale to a specific range. Normalization helps to
support efficient and stable model training. To boost the training set’s ability and robustness, several data
augmentation techniques are applied. These includes color jittering where random color adjustments are done, images
are flipped horizontally and vertically as it generates mirrored versions of images. Images are also rotated as it alters
their orientation by applying random angles. To help the model generalize to different object distances, images are
scaled as it adjusts image size, and lastly images are translated along the X or Y axis. By applying transformation like
positional shifts and color jittering, realistic changes in lighting, brightness and color which simulates real-world
conditions

Methodology
An adapted form of popular MobileNetV2 architecture is used for feature extraction, referred to as modified
MobileNetV2. MobileNetV2 is a lightweight, resource-efficient deep learning architecture specifically designed for
mobile and edge devices.[20] For image classification and object detection tasks, it is popularly used as it offers
improved computational efficiency while maintaining high performance [22]. The fundamental building block of
MobileNetV2 is the inverted residual block, which is made up of several important components as shown in Figure 1.
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FIGURE 1. MobileNetV2

The core unit of MobileNetV2 is the inverted residual block which helps make the model both powerful and
efficient. It consists of Expansion Layer which utilizes a 1x1 convolution to increase the input channel dimensions.
This improves the model's ability to capture and represent complex features effectively.

The depth wise separable convolution reduces the computational complexity while maintaining the expressive
power of the network. The Projection layer also known as the bottleneck layer compresses feature maps to lower
dimensionality, improving efficiency. Similar to ResNet, skip connection helps the network by allowing information
and gradients to flow more easily and allowing deeper networks to be trained effectively [23].



To further enhance feature extraction capabilities, the final inverted residual block of MobileNetV2 is substituted
with a depth-wise dilated separable convolution layer. This modification was used to broaden the receptive field while
preserving computational efficiency. Unlike the traditional 3x3 depth wise convolution, this approach uses a 3x3
depth wise dilated convolutions with a dilation rate of 2. By doing so, the network effectively captures multi-scale
contextual information without significantly increasing the number of trainable parameters.
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FIGURE 2. Modified MobileNetV2

A dilated convolution introduces spatial gaps (holes) between kernel values, effectively widening the receptive
field of the convolutional operation. Instead of increasing kernel size or the number of parameters, dilated convolutions
achieve broader coverage by inserting zeros between elements in the convolutional kernel. Mathematically, a dilated

convolution with dilation rate d is given by:

L y(@)
= Z x(i+d- k) -w(k) (1
k=0

where: x(i) - is the input feature map, w(k) - is the kernel weight, d - is the dilation rate, and K - is the kernel size.
4

(@ ()
FIGURE 2. Effect of Dilation Rate (a) Dilation Rate = 1 (b) Dilation Rate = 2

RESULTS AND DISCUSSIONS

Model Training Details

To enhance the feature extraction capabilities of the baseline MobileNetV2 architecture, a custom convolutional
module is used. This module combines depth wise separable convolution with dilation, enabling the model to capture
multi-scale contextual information while maintaining computational efficiency. It consists of the depth wise
convolution with dilation which performs convolution independently over each input channel with a dilation rate of
2. This expands the receptive field without increasing the number of parameters or significantly impacting
computational cost [24]. Pointwise Convolution applies a 1x1 convolution to project the depth wise output to the
desired number of output channels, facilitating inter-channel mixing. For faster convergence and improved
generalization batch normalization is used [25]. The swish activation introduces non-linearity after normalization,
enabling the model to learn complex patterns. Unlike ReLU used in MobileNetV2, swish is differentiable as it allows
negative values which improves the gradient flow. It provides more flexibility as the input is scaled by a sigmoid gate
as shown in equation 2.
swish(x) = x - gfix) 2)
where x is the input, Bx) is the sigmoid function, [§ is a trainable or fixed parameter which is often set to 1.



If B = 1, the equation simplifies to
swish(x) = x - o0x) 3)

The final layers include adaptive average pooling layer which reduces the spatial dimensions to 1x1 aggregating
global features and fully connected layer which maps the 1280-dimensional feature vector to the number of disease
classes using a linear classifier.

In the modified MobileNetV2 framework, the initial layers (0 to 16) were frozen to preserve the knowledge
acquired during pre-training, while layers 17 and 18 were fine-tuned to adapt the model to the specific task of
sugarcane disease classification. Training was carried out using the adam optimizer in conjunction with a multi-class
cross-entropy loss function. To enhance the model's effectiveness, various hyperparameter settings were evaluated. A
learning rate of 0.00001 was employed, and experiments were conducted with batch sizes of 32.

RESULTS
The classification report demonstrates that the modified model achieves strong and consistent performance across
all five categories of sugarcane leaf conditions Mosaic, Red Rot, Rust, Yellow and Healthy. The model demonstrates
high precision and recall values and attains an overall accuracy of 95%. This indicates that model’s robustness in
making accurate and trustworthy predictions. Figure 4, showcases that model has a high performance in detecting rust
and healthy leaves with fl-score of 0.97 for both classes. It demonstrates impressive recall of 0.99 for healthy leaves
and 0.98 for rust class. This justifies that it rarely missed actual cases and made very few false negatives.

A balanced classification ability is seen as Mosaic, red rot, and yellow diseases also show strong flscores of 0.95,
0.94, and 0.95, respectively. Across all classes, the macro and weighted averages for precision, recall, and F1-score
are 0.95. The model’s effectiveness for both balanced and imbalanced class distributions can be seen. Overall, the
model is reliable and can make a practical option for real-world use in precision agriculture especially when it comes
to spotting sugarcane leaf diseases early and accurately.
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FIGURE 3. Confusion matrix for Modified MobileNetV2 FIGURE 4. Classification Report for Modified MobileNetV2

The training and testing performance of the Modified MobileNetV2 model over 20 epochs demonstrated in Figures
5 and 6. In Figure 5, the accuracy curve shows a gradual improvement in training accuracy, which reaches close to
99%, while testing accuracy plateaus at around 95% early in the training process and remains consistent. This indicates
that the model has learnt well from the training data and model’s ability is not reduced to generalize the learnings on
the unseen data.

Figure 6 presents the loss curves Figure 6 presents the loss curves, which shows a steep drop in training loss that
converges to zero. Additionally at the same time the testing loss stays low and stable across the epochs. This shows
that the model avoids overfitting ensuring stable performance on the unseen data. This collectively highlights the
capability of the Modified MobileNetV2 architecture in both, learning from data and generalizing key features for
sugarcane leaf disease classification.
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FIGURE 5. Accuracy Curve for Modified MobileNetV2 FIGURE 6. Loss trend for Modified MobileNetV2

Performance Evaluation against Baseline Models
A standard pretrained MobileNetV2 was also evaluated under identical experimental conditions achieving an
accuracy of 85.3%. A number of pre-existing models that were documented in earlier research were taken into
consideration for comparison study. Table 4 provides an overview of their classification accuracy for identifying
sugarcane leaf disease. Notably, the suggested model outperformed the technique presented in [4], which achieved an
accuracy of 86.35% using a stacking ensemble that combined a conventional CNN with a spatial attention-based CNN.
It also performed well as compared to other popular models.

TABLE 4. Comparison of Model Performance

Reference Class Accuracy
[7] EfficientNet B7 72.72%
[7] ResNet50 80.64%
[12] Modified ResNet50 81.70%
[7] MobileNetV2 83.24%
[4] CNN Stack Ensemble Model 86.53 %
- Modified MobileNetV2 95.00%

In contrast, the modified MobileNetV2 achieved the accuracy of 95%, making it the most effective model among

those compared. To provide consistent and fair evaluation, every model in the comparison worked on the same dataset
[20].

CONCLUSION AND FUTURE DIRECTION

Several deep learning and transfer learning techniques for classification of sugarcane leaf diseases have been
reviewed and a brief summary has been provided. A modified MobileNetV2 technique based on integration of
MobileNetV2 architecture with dilated depth wise separable convolution for improved performance is presented. The
model’s ability to learn essential spatial features is considerably strengthened by expanding the receptive field in the
final residual block. Further the ReLu activation function of MobileNetV2 is replaced by swish, which allows small
negative values to pass through, and helps in better optimization. Thorough experimentation on a diverse dataset
demonstrated the enhanced performance of the model by achieving classification accuracy of 95%. This outperforms
not only the baseline MobileNetV2 but also other architectures including EfficientNet B7, ResNet50 and a stacking
ensemble of sequential CNN and spatial attention-based CNN [4].

In the future, research work can focus on increasing the dataset size to include a greater variety of sugarcane plant
leaf diseases with different classes. Alternative deep learning architectures leveraging ensemble strategies, attention-
based transformer architectures can be explored. Additionally, integration of data from different modality, such as
agro-climatic parameter of soil and weather conditions can build robust models to work in real time agricultural field.



Employing progressive optimization techniques based on particle swarm optimization may further improve the
accuracy and suitability of disease detection systems in actual agricultural environments.
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