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Abstract. Sugarcane is an important cash crop, which largely contributes in the sugar production globally. However, due its 

long growth cycles its yield as well as quality are often affected by various fungal, bacterial and viral diseases. Traditional 

disease detection methods completely rely on the human manual inspection, which is prone to errors and time consuming. 

Recent advancements in deep learning have improved the capability of automated, image-based plant disease detection. A 

detailed review of deep learning and transfer learning techniques for sugarcane leaf disease detection and classification is 

provided in this paper. It presents the various methodologies used for sugarcane plant disease detection along with its 

performance. Leveraging insights from existing literature, a modified MobileNetV2 architecture is used which embeds a dilated 

depth wise separable convolution to elevates feature extraction strength. This method also replaces ReLU activation function 

of the traditional MobileNetV2 with swish which helps in better optimization. The model is assessed on a varied, balanced 

dataset of sugarcane plant leaf images. It achieves a classification accuracy of 95%, transcending several existing models. The 

results show that the enhanced MobileNetV2 is well-suited for effectively detecting and classifying sugarcane plant diseases. 

It further provides insight for future research into multimodal inputs and combining environmental parameters for the 

development of robust and scalable solutions for better precision agriculture. 

INTRODUCTION 

Sugarcane is a global cash crop, prized for its high sugar content and is used to produce ethanol, jaggery, bagasse, 

and molasses as by product. As the second-largest producer and consumer of sugar, India supports one of the world’s 

most extensive agriculture-based industries. The juice from sugarcane has health benefits due to its alkaline properties. 

However, industry faces significant challenges as sugarcane diseases frequently endanger the yield and quality of 

sugarcane, posing major difficulties for farmers and the stakeholders. 

Despite the significant economic value, sugarcane is highly prone to diseases caused by bacteria, fungi, viruses, 

and other pathogens. Common diseases affecting sugarcane leaves and stems include mosaic disease, white leaf 

disease, red rot, smut, wilt, yellow leaf disease, grassy shoot, red stripe, and rust. Foliar diseases are especially harmful, 

resulting in considerable losses in productivity and product quality. Therefore, early detection and accurate 

identification are crucial for implementing effective management strategies and minimizing potential damage. 

Traditional approach to diagnosing sugarcane leaf diseases usually depend on visual inspections carried out by 

agricultural experts. Although traditional manual methods can be somewhat effective, they are generally slow, labour-

intensive, and prone to human errors and subjective judgements. Adopting automated techniques for detecting 

sugarcane leaf diseases provides a more efficient, accurate, and reliable solution, significantly improving the precision 

and speed of disease identification. Automation in this context offers several significant benefits. 

Enhanced accuracy: Traditional disease detection relies on expert assessment, which can be error prone. 

Automated systems reduce human intervention, thereby increasing accuracy. 

Cost efficiency: Manual crop inspection is resource-intensive, requiring high labour costs and specialized 

equipment. Automation provides efficient and cost-effective solutions to these challenges. 

Improved monitoring: By leveraging advanced technology, automated sugarcane leaf disease detection enhances 

monitoring efficiency, boosts diagnostic accuracy, and optimizes crop management. 

 

The lengthy growth cycle of sugarcane makes timely disease detection crucial. Image processing and deep learning 

can identify plant issues by analysing leaf colour, shape, and damage. As climate challenges intensify, deep learning 

combined with tools like sensors and drones, enhances crop monitoring, soil analysis, and farm management. 
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Although still emerging, these technologies have great potential for early and accurate disease detection, thereby 

boosting productivity and food security. 

 

REPORTED WORK 

Deep Learning based approach 

 
Deep learning methodologies have revolutionized sugarcane plant disease detection, which offer better accuracy, 

automated feature extraction, and scalability as compared to the traditional machine learning methods. Unlike machine 

learning models such as Random Forest, SVM, and KNN, which rely on manual feature engineering and handcrafted 

segmentation techniques, deep learning models like CNNs, Vision Transformers (ViTs), and hybrid architectures 

automatically learn spatial hierarchies and complex patterns from the raw images. By use of this, the dependency on 

predefined feature selection is eliminated, making deep learning more robust to variations in lighting, background, 

and disease symptoms. 

 

Deep learning-based methodologies have significantly advanced sugarcane plant disease detection by leveraging 

powerful convolutional and transformer-based architectures. Various studies have explored deep learning models to 

optimize classification accuracy and efficiency. [1] compared multiple CNN architectures, including StridedNet, 

LeNet, and VGGNet, on a dataset of 14,725 sugarcane leaf images, with VGGNet achieving the highest accuracy of 

95.40%, demonstrating its superior feature extraction capability. Similarly,[2] investigated EfficientNetV1 and 

EfficientNetV2 on the Sugarcane Leaf Dataset (6,748 images, 11 disease classes), revealing that EfficientNet-B6 

(93.39%) and InceptionV4 (93.10%) performed best, emphasizing the need for architecture-specific optimizations. A 

comparative analysis by [3] assessed AlexNet, ResNet18, VGG19, and DenseNet201 for detecting Red Rot, Red Rust, 

Mosaic, and Yellow Leaf Disease on a dataset of 1,990 images, with VGG19 achieving 98.82% accuracy, making it 

the most effective model in multi-class classification. Furthermore, [4] developed a self-created dataset-based model 

that outperformed VGG19, ResNet50, XceptionNet, and EfficientNet_B7, achieving 86.53% accuracy and integrating 

the AMRCNN model into a mobile application, ensuring accessibility and real-time disease classification.  

 

Enhancing efficiency,[5] introduced an optimized ShuffleNetV2-based model with ECA attention and 

Transformer modules, achieving lightweight mobile deployment with only 0.4MB of parameters and 1.57MB memory 

usage. Moreover, [6] presented an explainable AI model that integrates DenseNet with SVM and LIME, providing 

visual interpretability to aid farmers in disease classification and pesticide recommendation. Additionally, [7] 

evaluated ResNet-50, VGG-16, DenseNet-201, VGG-19, and Inception V3 on a dataset of 2,511 images, where 

ResNet-50 (95.69%) and VGG-16 (93.26%) outperformed other models, while Inception V3 (74.88%) exhibited lower 

accuracy. These studies collectively highlight advancements in deep learning-driven sugarcane disease detection, with 

improvements in accuracy, efficiency, mobile deployment, and interpretability. However, gaps remain in real-time 

scalability, dataset diversity, and edge-computing implementation for offline detection, necessitating further research 

into lightweight and high-accuracy models tailored for real-world agricultural applications. 

Mobile integration has enhanced accessibility, enabling farmers to diagnose diseases using smartphone-based 

applications. The development of lightweight and efficient models, such as ShuffleNetV2 and AMRCNN, has 

optimized computational resources while maintaining high classification accuracy. Additionally, by combining 

explainable AI methods like DNet-SVM: XAI, the model's transparency has been greatly enhanced. This makes it 

easier to understand and interpret the decisions behind disease classifications. Furthermore, the implementation of 

state-of-the-art CNN architectures has considerably increased the accuracy and reliability of plant disease detection 

and classification, ensuring reliable and trustworthy detection in actual agricultural conditions. 

 

Despite these advancements, several challenges persist, hindering the scalability and practical deployment of these 

models. A significant limitation is the need for larger and more diverse datasets. Many existing models are trained on 

region-specific or laboratory-controlled datasets, which restrict their generalizability across various climatic and 

environmental conditions. Also, real-time performance optimization is necessary to enable immediate disease 

identification and intervention, particularly for large-scale farming operations. Moreover, the absence of edge 

computing-based solutions limits the feasibility of offline disease detection in remote with limited internet 

connectivity. Overcoming these challenges through data augmentation, federated learning, and edge AI technologies 

will be essential for improving the effectiveness and accessibility of deep learning models in precision agriculture. 
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Transfer Learning based approach 
Transfer learning is an effective approach for plant disease detection. It employs pre-trained deep learning models, where 

knowledge acquired from one task one task is applied to improve performance on a related task. It is widely used to improve 

classification accuracy for plant disease detection with limited data. It is particularly helpful when labeled images of sugarcane 

diseases are scarce. It allows models to learn from larger, related datasets, adapt knowledge and perform effectively on task 

with small dataset. This approach eliminates the need for training from scratch, significantly reducing time and computational 

costs. It is useful when existing models trained on general plant diseases can be fine-tuned for sugarcane-specific conditions. 

 

TABLE 1. Overview of Deep Learning models utilized in sugarcane plant disease detection across various studies 

 
Ref Dataset Image 

Count 

Classe 

Count 

Name of 

diseases 

Classifier / Model / 

Algorithm 

Performance 

Parameters  

Methodology 

[1]  Self-

collected 

14,725 7 Grassy shoot, Red 

Rot, Smut, Rust, 

Yellow Disease, 

Healthy 

LeNet 

VGGNet 

StridedNet 

Accuracy - 95.40% 

Accuracy - 93.65% 

Accuracy - 90.10% 

Employes three CNN architectures 

(VGGNet, LeNet, and StridedNet) with data 

augmentation and Adam Optimizer with 

categorical cross-entropy 

[2]  Publicly 

available 

6748 11 Banded Chlorosis, 

Brown Rust, 

Brown Spot, 

Grassy Shoot, 

Pokkah boeng, 

Sett Rot, Smut, 

Viral Disease, 

Yellow Leaf, 

Dried Leaves, 

Healthy Leaves 

EfficientNet-B6 

InceptionV4 

Accuracy - 93.39% 

Accuracy - 93.10% 

Employs DL and TL with EfficientNet, 

ResNetv2-50, and InceptionV4 models, 

leveraging data augmentation and pre-

trained weights 

[3]  Publicly 

available 

Kaggle 

1990 4 Red Rot,Red Rust, 

mosaic, 

and yellow leaf 

disease 

AlexNet,  

VGG19 

ResNet18 

DenseNet201 

Accuracy - 97.06%, 

Precision - 94.06% 

Accuracy - 98.82% , 

Precision - 96.77% 

Accuracy - 97.21% , 

Precision - 90.64% 

Accuracy - 97.94% , 

Precision - 94.16% 

Employes CNN architectures with data 

augmentation and hyperparameter tuning 

for enhanced model performance  

[4]  Public 

Mendeley 

[39] 

2569 5 Healthy, Mosaic, 

Redrot, Rust and 

Yellow disease 

Attention based multi-level 

residual convolutional 

neural network 

Accuracy - 86.53% An attention-based CNN architecture with 

channel and spatial attention mechanisms, 

leveraging residual connections for 

improved feature extraction. 

[5]  Kaggle 2569 5 Healthy, Mosaic, 

Redrot, Rust and 

Yellow disease 

ShuffleNetV2 Accuracy - 93.88% Uses ShuffleNetV2 by integrating multi-

scale feature extraction, ECA attention, and 

Transformer-based learning, and training on 

an augmented dataset. 

[6]  Plant 

Village 

and  

Self 

14000 5 bacterial 

blight/red stripe, 

wilt, red rot, red 

rust, and sett rot 

DNet-SVM Accuracy - 94 % 

Sensitivity - 0.94 

Specificity - 0.86  

FNR - 0.05, FPR - 0.13 

Feature Extraction using DenseNet201, 

classifies images with SVM instead of 

Softmax, and utilizes LIME (Local 

Interpretable Model-Agnostic Explanation) 

to provide transparent justifications for 

disease predictions 

[13] Self-

collected 

3000 3 Rust, Smut, and 

Leaf Scald 

EfficientNet Accuracy - 94.6% Fine-tuning a pre-trained EfficientNet 

model 

[14]  Public 

Mendeley 

2521 5 Healthy, Mosaic, 

Redrot, Rust and 

Yellow disease 

ResNet-50 

VGG-16  

DenseNet-201 

VGG-19 

Inception V3 

Accuracy - 95.69% 

Accuracy - 93.26% 

Accuracy - 89.62% 

Accuracy - 79.62% 

Accuracy - 74.88% 

Preprocessing techniques like gamma 

correction and contrast stretching are 

applied followed by fine-tuning model 

parameters 

[15] Self-

collected 

16,800 6 Cercospora Leaf 

Spot, 

Helminthosporiu

m Leaf, Rust, Red 

Dot, Yellow Leaf 

Disease, Healthy 

VGG16 

ResNetV2-152 

AlexNet,  

InceptionV3 

Accuracy - 98.88% 

Accuracy - 99.23% 

Accuracy - 99.24% 

Accuracy - 99.53% 

Use of SGD optimizer with varying 

hyperparameter settings, including epoch 

count, momentum, learning rate, and batch 

size, to optimize classification accuracy. 

[16] Self-

collected 

1,828   Sugarcane Smut, 

Sugarcane Mosaic 

Virus 

Modified ResNet34 Accuracy - ~94 – 95% 

F1 Score - ~96% 

Modified ResNet34 with Dual Self-

Attention Block (DSAB) for spectral-spatial 

feature extraction on high-resolution 

hyperspectral image 

[17] Self-

collected 

3,279 2 Sugarcane smut Enhanced YOLOv5s Precision: 97.0% 

Recall: 94.3% 

mAP : 97.8% 

lightweight YOLOv5s-based model 

(YOLOv5s-ECCW) designed using 

EfficientNetV2, CBAM, C3STR, and WIoU 

loss function 
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[18] Self-

collected 

200  Sugarcane smut ResNet-based CNN with 

Dual Self-Attention Block 

(DSAB) 

Accuracy -90.86% 

F1 Score – 88.51% 

Specificity - 93.64% 

Sensitivity - 86.79% 

Employed hyperspectral imaging and a 

ResNet-based deep learning model with a 

Dual Self-Attention Block (DSAB) 

[19] Publicly 

avaible 

250 5 Mosaic, Red Rot, 

Rust, Yellow 

Leaf, and Healthy 

VGG16 Accuracy- 90.11% VGG16 model optimized with L2 

regularization and the Adam optimizer. 

Additionally, transfer learning excels in detecting multiple diseases with subtle visual differences, ensuring better pattern 

recognition and classification. By adapting pre-learned knowledge, it enables precise identification of diseased and healthy 

leaves, making it an efficient and scalable solution for agricultural disease detection. 

Deep learning methodologies have demonstrated superior performance in sugarcane disease detection, particularly through 

transfer learning, optimization techniques, and advanced classification models. In [8] modifications to DenseNet121 and 

InceptionV3 with additional layers, batch normalization, dropout, and LASSO regularization significantly improved accuracy, 

with InceptionV3 achieving 97% and DenseNet121 reaching 96%, outperforming traditional architectures. Similarly, [9] 

validates the effectiveness of transfer learning for sugarcane disease detection on a limited dataset (1,470 images), where 

ResNet (91%) outperformed VGG-16 (83%), reinforcing the adaptability of deep learning in agricultural applications. Further 

optimization is explored in [10] where a Quantum Behaved Particle Swarm Optimization-based Deep Transfer Learning 

(QBPSO-DTL) model achieved 96.25% accuracy by integrating optimal region-growing segmentation, SqueezeNet for 

feature extraction, and a Deep Stacked Autoencoder (DSAE) for classification. The use of QBPSO for hyperparameter tuning 

further validated the efficiency of the model in fine-tuning deep learning architectures. Similarly, [11] investigates the impact 

of activation functions on AlexNet, showing that LeakyReLU improved accuracy to 90.67% compared to ReLU (87.90%), 

though at a higher computational cost, emphasizing the trade-off between accuracy and efficiency in deep learning. 

In [12] ResNet-50 was utilized as the backbone model, incorporating transfer learning, fine-tuning in TensorFlow, and 

data augmentation techniques (Gaussian Blur, brightness adjustment) to enhance classification. Despite achieving an accuracy 

of 81.70%, this study highlights the challenges of background segmentation and dataset variability in deep learning-based 

disease detection. 

Despite these advancements, several challenges remain that hinder the real-time applicability and scalability of these 

models. Computational efficiency remains a concern, particularly for resource-constrained environments, as deep learning 

models often require high processing power and extended training times. Additionally, dataset limitations, including 

insufficient labeled images and variations in environmental conditions, impact model generalization across diverse 

agricultural settings. Sensitivity to background noise and variability in leaf textures and lighting conditions further affect the 

reliability of disease detection models in real-world applications.      

 

TABLE 2. Overview of Transfer Learning models utilized in sugarcane plant disease detection across various studies 
Ref Dataset Image 

Count 

Classe 

Count 

Name of 

diseases 

Classifier / Model / 

Algorithm 

Performance 

Parameters  

Methodology 

[8] 

 

Public 

Mendeley 

2569 5 Healthy, Mosaic, 

Redrot, Rust and 

Yellow disease 

Regularized InceptionV3 

Dense-Net121 

Precision - 97%, Recall 

- 97%, F1 Score - 97%, 

Accuracy - 97% 

 

Precision - 96%, Recall 

- 96%, F1 Score - 96%, 

Accuracy - 96% 

 

Incorporated nine additional layers, LASSO 

regularization, dropout layers, 

normalization techniques, optimization 

strategies, and early stopping 

[9]  Self -

Collected 

1470 5 Healthy, Mosaic, 

Redrot, Rust and 

Yellow disease 

VGG-16  

ResNet 

Accuracy - 83% 

Accuracy - 91% 

learning rate of 0.005, Adam Optimization 

algorithm and a batch size  

of 32 images. 

[10]  Self 

collected 

80 2 Diseased and Non 

diseased 

Deep Stacked Autoencoder 

(DSAE) 

Accuracy - 96.25%,  

SqueezeNet model for efficient feature 

extraction and Deep Stacked Autoencoder 

(DSAE) for classification 

[11]  Public 

Mendeley 

2569 5 Healthy, Mosaic, 

Redrot, Rust and 

Yellow disease 

AlexNet (activation 

functions ReLU and 

LeakyReLU) 

LeakyReLU -Accuracy 

- 90.67% 

ReLU -Accuracy - 

87.90% 

Impact of activation functions on AlexNet's 

performance in sugarcane disease 

classification, comparing ReLU and 

LeakyReLU. 

[12]  Public 

Mendeley 

2569 5 Healthy, Mosaic, 

Redrot, Rust and 

Yellow disease 

Modified ResNet50 Accuracy - 81.7% Utilizes techniques such as gaussian blur, 

linear contrast, brightness adjustment, and 

additive gaussian noise for data 

augmentation. 

feature histograms used for feature 

extraction  
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METHODOLOGY 

           

            Dataset 
This experiment utilized the sugarcane leaf disease dataset [21] which comprises 2,569 RGB images across five 

categories: Healthy, Mosaic, Red Rot, Rust, and Yellow Leaf Disease. Captured in Maharashtra, India, the dataset 

maintains a balanced distribution among all classes and includes a wide range of visual variations.  

 
TABLE 3. Dataset class labels and no of samples 

Class No of samples 

Mosaic 511 

Red Rot 519 

Rust 514 

Yellow 505 

Healthy 520 

 

Dataset Preprocessing 

The dataset was divided using an 80:10:10 ratio for training, validation, and testing to evaluate the model's 

performance effectively. All images were resized to 224x224 pixels, to ensure uniformity and consistency. Post 

resizing, normalization is applied, pixel values are normalized to scale to a specific range. Normalization helps to 

support efficient and stable model training. To boost the training set’s ability and robustness, several data 

augmentation techniques are applied. These includes color jittering where random color adjustments are done, images 

are flipped horizontally and vertically as it generates mirrored versions of images. Images are also rotated as it alters 

their orientation by applying random angles. To help the model generalize to different object distances, images are 

scaled as it adjusts image size, and lastly images are translated along the X or Y axis. By applying transformation like 

positional shifts and color jittering, realistic changes in lighting, brightness and color which simulates real-world 

conditions 

 

Methodology 
An adapted form of popular MobileNetV2 architecture is used for feature extraction, referred to as modified 

MobileNetV2. MobileNetV2 is a lightweight, resource-efficient deep learning architecture specifically designed for 

mobile and edge devices.[20] For image classification and object detection tasks, it is popularly used as it offers 

improved computational efficiency while maintaining high performance [22]. The fundamental building block of 

MobileNetV2 is the inverted residual block, which is made up of several important components as shown in Figure 1. 
 

 
 

FIGURE 1. MobileNetV2 

 

 The core unit of MobileNetV2 is the inverted residual block which helps make the model both powerful and 

efficient. It consists of Expansion Layer which utilizes a 1×1 convolution to increase the input channel dimensions. 

This improves the model's ability to capture and represent complex features effectively.  

 

The depth wise separable convolution reduces the computational complexity while maintaining the expressive 

power of the network. The Projection layer also known as the bottleneck layer compresses feature maps to lower 

dimensionality, improving efficiency. Similar to ResNet, skip connection helps the network by allowing information 

and gradients to flow more easily and allowing deeper networks to be trained effectively [23]. 
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To further enhance feature extraction capabilities, the final inverted residual block of MobileNetV2 is substituted 

with a depth-wise dilated separable convolution layer. This modification was used to broaden the receptive field while 

preserving computational efficiency. Unlike the traditional 3×3 depth wise convolution, this approach uses a 3×3 

depth wise dilated convolutions with a dilation rate of 2. By doing so, the network effectively captures multi-scale 

contextual information without significantly increasing the number of trainable parameters. 

 

 
         FIGURE 2. Modified MobileNetV2 

 

A dilated convolution introduces spatial gaps (holes) between kernel values, effectively widening the receptive 

field of the convolutional operation. Instead of increasing kernel size or the number of parameters, dilated convolutions 

achieve broader coverage by inserting zeros between elements in the convolutional kernel. Mathematically, a dilated 

convolution with dilation rate 𝑑 is given by:  

                                                                    𝑦(𝑖)    

=  ∑

𝐾−1

𝑘=0

𝑥(𝑖 +  𝑑 ⋅  𝑘)  ⋅ 𝑤(𝑘)                                                                          (1) 

where: 𝑥(𝑖) - is the input feature map, 𝑤(𝑘) - is the kernel weight, 𝑑 - is the dilation rate, and 𝐾 - is the kernel size. 

 

 
                                     (a)           (b)   

FIGURE 2. Effect of Dilation Rate (a) Dilation Rate = 1 (b) Dilation Rate = 2  

 

 

RESULTS AND DISCUSSIONS 

 

Model Training Details 
 

To enhance the feature extraction capabilities of the baseline MobileNetV2 architecture, a custom convolutional 

module is used. This module combines depth wise separable convolution with dilation, enabling the model to capture 

multi-scale contextual information while maintaining computational efficiency. It consists of the depth wise 

convolution with dilation which performs convolution independently over each input channel with a dilation rate of 

2. This expands the receptive field without increasing the number of parameters or significantly impacting 

computational cost [24]. Pointwise Convolution applies a 1×1 convolution to project the depth wise output to the 

desired number of output channels, facilitating inter-channel mixing. For faster convergence and improved 

generalization batch normalization is used [25]. The swish activation introduces non-linearity after normalization, 

enabling the model to learn complex patterns. Unlike ReLU used in MobileNetV2, swish is differentiable as it allows 

negative values which improves the gradient flow. It provides more flexibility as the input is scaled by a sigmoid gate 

as shown in equation 2. 

𝑠𝑤𝑖𝑠ℎ(𝑥) =  𝑥 ⋅ 𝜎𝛽𝑥)                                                                       (2) 

where 𝑥 is the input, 𝜎𝛽𝑥)  is the sigmoid function, 𝛽 is a trainable or fixed parameter which is often set to 1. 
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If  𝛽 = 1, the equation simplifies to 

𝑠𝑤𝑖𝑠ℎ(𝑥) =  𝑥 ⋅ 𝜎𝑥)                                                                          (3) 

 

 The final layers include adaptive average pooling layer which reduces the spatial dimensions to 1×1 aggregating 

global features and fully connected layer which maps the 1280-dimensional feature vector to the number of disease 

classes using a linear classifier. 

 

In the modified MobileNetV2 framework, the initial layers (0 to 16) were frozen to preserve the knowledge 

acquired during pre-training, while layers 17 and 18 were fine-tuned to adapt the model to the specific task of 

sugarcane disease classification. Training was carried out using the adam optimizer in conjunction with a multi-class 

cross-entropy loss function. To enhance the model's effectiveness, various hyperparameter settings were evaluated. A 

learning rate of 0.00001 was employed, and experiments were conducted with batch sizes of 32. 

 

 

RESULTS 
The classification report demonstrates that the modified model achieves strong and consistent performance across 

all five categories of sugarcane leaf conditions Mosaic, Red Rot, Rust, Yellow and Healthy. The model demonstrates 

high precision and recall values and attains an overall accuracy of 95%. This indicates that model’s robustness in 

making accurate and trustworthy predictions. Figure 4, showcases that model has a high performance in detecting rust 

and healthy leaves with f1-score of 0.97 for both classes. It demonstrates impressive recall of 0.99 for healthy leaves 

and 0.98 for rust class. This justifies that it rarely missed actual cases and made very few false negatives. 

  

A balanced classification ability is seen as Mosaic, red rot, and yellow diseases also show strong f1scores of 0.95, 

0.94, and 0.95, respectively. Across all classes, the macro and weighted averages for precision, recall, and F1-score 

are 0.95. The model’s effectiveness for both balanced and imbalanced class distributions can be seen. Overall, the 

model is reliable and can make a practical option for real-world use in precision agriculture especially when it comes 

to spotting sugarcane leaf diseases early and accurately. 
 

                            
FIGURE 3. Confusion matrix for Modified MobileNetV2               FIGURE 4. Classification Report for Modified MobileNetV2    

 

The training and testing performance of the Modified MobileNetV2 model over 20 epochs demonstrated in Figures 

5 and 6. In Figure 5, the accuracy curve shows a gradual improvement in training accuracy, which reaches close to 

99%, while testing accuracy plateaus at around 95% early in the training process and remains consistent. This indicates 

that the model has learnt well from the training data and model’s ability is not reduced to generalize the learnings on 

the unseen data.  

 

Figure 6 presents the loss curves Figure 6 presents the loss curves, which shows a steep drop in training loss that 

converges to zero. Additionally at the same time the testing loss stays low and stable across the epochs. This shows 

that the model avoids overfitting ensuring stable performance on the unseen data. This collectively highlights the 

capability of the Modified MobileNetV2 architecture in both, learning from data and generalizing key features for 

sugarcane leaf disease classification. 
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 FIGURE 5. Accuracy Curve for Modified MobileNetV2                         FIGURE 6. Loss trend for Modified MobileNetV2    

 

Performance Evaluation against Baseline Models 
A standard pretrained MobileNetV2 was also evaluated under identical experimental conditions achieving an 

accuracy of 85.3%. A number of pre-existing models that were documented in earlier research were taken into 

consideration for comparison study. Table 4 provides an overview of their classification accuracy for identifying 

sugarcane leaf disease. Notably, the suggested model outperformed the technique presented in [4], which achieved an 

accuracy of 86.35% using a stacking ensemble that combined a conventional CNN with a spatial attention-based CNN. 

It also performed well as compared to other popular models. 

 
TABLE 4. Comparison of Model Performance 

Reference Class Accuracy 

[7] EfficientNet_B7 72.72% 

[7] ResNet50 80.64% 

[12] Modified ResNet50 81.70% 

[7] MobileNetV2 83.24% 

[4] CNN Stack Ensemble Model  86.53 % 

            -  Modified MobileNetV2  95.00% 

 

In contrast, the modified MobileNetV2 achieved the accuracy of 95%, making it the most effective model among 

those compared. To provide consistent and fair evaluation, every model in the comparison worked on the same dataset 

[20]. 

 

CONCLUSION AND FUTURE DIRECTION 

Several deep learning and transfer learning techniques for classification of sugarcane leaf diseases have been 

reviewed and a brief summary has been provided. A modified MobileNetV2 technique based on integration of 

MobileNetV2 architecture with dilated depth wise separable convolution for improved performance is presented. The 

model’s ability to learn essential spatial features is considerably strengthened by expanding the receptive field in the 

final residual block. Further the ReLu activation function of MobileNetV2 is replaced by swish, which allows small 

negative values to pass through, and helps in better optimization. Thorough experimentation on a diverse dataset 

demonstrated the enhanced performance of the model by achieving classification accuracy of 95%. This outperforms 

not only the baseline MobileNetV2 but also other architectures including EfficientNet_B7, ResNet50 and a stacking 

ensemble of sequential CNN and spatial attention-based CNN [4].  

In the future, research work can focus on increasing the dataset size to include a greater variety of sugarcane plant 

leaf diseases with different classes. Alternative deep learning architectures leveraging ensemble strategies, attention-

based transformer architectures can be explored.  Additionally, integration of data from different modality, such as 

agro-climatic parameter of soil and weather conditions can build robust models to work in real time agricultural field. 
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Employing progressive optimization techniques based on particle swarm optimization may further improve the 

accuracy and suitability of disease detection systems in actual agricultural environments. 
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