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Abstract. In areas prone to floods, accurate prediction and alert systems are extremely essential to help to minimize the 

consequences of natural occurrences.   Examining past meteorological data since 1979, this work proposes a flood alert system 

using Deep Learning (DL) and Internet of Things (IoT), based on Combining the OpenWeatherMap Application Programming 

Interface (API) with an Encoder-Decoder Long Short-Term Memory (LSTM) model and alerting to possible flood hazards 

depending on pre-defined thresholds, the system offers real-time weather updates for users' locations, rainfall forecasts for the 

next 120 hours.   Using a hardware CPU, the Raspberry Pi serves as the model server and manages seamless interactions 

between the model and APIs so allowing the propagation of flood risk notifications.   Matunga East, Byculla, and Dahisar were 

three models developed for various areas of Mumbai given their high flood risk, heavy population, and national financial center 

importance.   One can extend this approach to other sites as well.   The suggested system computes the nearest model using the 

Haversine formula based on user distance from three sites.   This geographical proximity-based method ensures that the offered 

flood prediction fits the specific rainfall threshold for flooding of the specified area. 

INTRODUCTION 
In places prone to erratic rainfall and flooding, effective prediction and alert systems are very vital to help to reduce 

the detrimental effects of such natural catastrophes.   Accurate and timely flood forecasting is therefore very important 

for disaster readiness and response activities since climate change aggravates irregular weather patterns that adversely 

harm infrastructure, agriculture, and people [21], [22].   Even with advances in meteorological research, traditional 

forecasting methods occasionally fail to offer early warnings, thereby demanding innovative techniques [23]. 

The challenge of improving flood prediction and alert systems in the face of increasing climate variability has 

motivated researchers to explore hybrid and AI-assisted models that combine statistical and deep learning frameworks 

[24], [25].   Since deep learning, a subset of artificial intelligence (AI), has shown promise in identifying complex 

patterns in large datasets, it is suited for assessing historical weather data and expected trends.   Moreover, the 

integration of IoT devices provides real-time environmental condition monitoring, thereby boosting the speed and 

accuracy of flood risk estimations. 

A main novelty of this work is the implementation of a data-assisted flood alert system generating timely forecasts 

using Deep Learning models using Deep Learning models.   Unlike traditional forecasting methods, which rely on 

simplistic statistical models or deterministic algorithms, the proposed methodology derives important insights from 

massive volumes of historical weather data using the complexity of Deep Learning architectures.   Moreover, IoT 

devices such as the Raspberry Pi help to offer perfect connection between the Deep Learning model and real-time 

meteorological APIs, so facilitating fast distribution of flood risk warnings to end users. 
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This paper shows the design and implementation of a new flood prediction and alert system leveraging IoT 

technology and Deep Learning capability, following earlier exploratory work in AI-driven hazard detection systems 

[26], [27].   This work uses real-time IoT device data and previous meteorological data to offer better timeliness in 

forecasting flood disasters.   Our system provides end-user timely warnings of flood risk by means of Deep Learning 

models housed on Raspberry Pi devices and integration of real-time meteorological APIs, therefore supplementing 

catastrophic preparedness and response activities.   The method presented here marks a significant advancement in 

addressing the problems resulting from erratic rainfall and flooding in vulnerable regions, therefore helping to preserve 

life and infrastructure against the consequences of climate variability. 

LITERATURE SURVEY  
Proposed multiple times are LSTM-based models for rainfall prediction and forecasting in coastal and regional 

environments.   Nithyashri et al. [1] reported an IoT-based IoT-based method employing deep reinforcement learning 

and LSTM networks with 89% accuracy and outperforming existing methods for rainfall forecasting in coastal parts 

of India.   With 97.14% accuracy in rainfall prediction for Bangladesh, Billah et al. [2] surpassed conventional methods 

using a two-layer LSTM model with Principal Component Analysis (PCA).   Using neural networks generating the 

lowest error (Mean Absolute Error (MAE)=2.20) and best R2 score (0.94), Tiwari and Singh [3] examined many 

machine learning algorithms for rainfall prediction in Indian states.   Rani et al. [4] proposed an IoT-based flood 

monitoring and alerting system whereby Convolutional Neural Network (CNN) beat Linear Regression and Support 

Vector Machine (SVM) including rainfall prediction.  

  LSTM networks have helped time series forecasting in many different domains greatly.   Lin et al. conducted 

transformer-based models in Long-term Time Series Forecasting (LTSF) accuracy better than  To minimize recurrent 

iterations in Recurrent Neural Networks (RNNs), [5] introduced Segment Recurrent Neural Network (SegRNN), 

which introduces segment-wise iterations and concurrent multi-step forecasting, so reaching significant runtime and 

memory reductions.   Wen and Li [6] shown an LSTM-attention-LSTM model that outperformed conventional models 

over multiple datasets by showing the efficacy of the attention mechanism in capturing inter-dependencies between 

time steps.   Zhang et al. [7] presented a new encoder-decoder architecture obtaining greater prediction accuracy than 

corresponding models using Gated Recurrent Unit (GRU) and attention for multivariate time series forecasting.  

  Some study have looked at hybrid designs and variants of LSTM networks in order to improve performance.   

Albeladi et al. [8] tested LSTM with Autoregressive Integrated Moving Average (ARIMA) models for time series 

forecasting to discover ARIMA outperforming LSTM based on assessment criteria including R-squared, Mean 

Squared Error (MSE), and Mean Absolute Percentage Error (MAPE).   Wang et al. [9] proposed Fuzzy 

Inference‑based Long Short-Term Memory (FI-LSTM) by adding fuzzy inference systems into LSTM, which more 

successfully captures long-term dependencies and non-linear patterns than state-of- the-art models across many 

datasets.   Lindemann et al. [10] addressed the partially conditioned Sequence-to- Sequence (Seq2Seq) LSTM for 

modeling both short-term and long-term dependencies, classifying LSTM designs for time series prediction into ideal 

cell state representations and interacting cell states, and so discussed.  

LSTM networks have been particularly successful in flood prediction and hydrology applications. Zenkner and 

Navarro-Martinez [11] developed Bi-directional Long Short-Term Memory (Bi-LSTM) models for temperature, 

humidity, and wind speed forecasting in London, achieving Root Mean Squared Error (RMSE) of 1.45°C for 24-hour 

temperature predictions. Li et al. [12] proposed the Synced Sequence Input and Output (SSIO) LSTM architecture for 

rainfall-runoff modeling, outperforming Sequence Input and a Single Output (SISO) LSTM in prediction accuracy 

and capturing long-term dependencies without fixed window sizes. Prabuddhi and Seneviratne [13] utilized LSTM 

for water level and flood prediction in the Deduru Oya river basin in Sri Lanka, with a hybrid LSTM+ARIMA 

approach achieving an RMSE of 0.0247 and R2 score of 0.8901. Gude et al. [14] used LSTM for river gauge height 

prediction with uncertainty intervals, outperforming ARIMA and achieving better accuracy with the data sub-selection 

method for uncertainty estimation.  

Several studies have explored the performance of LSTM and its variants for financial time series forecasting. 

Yadav et al. [15] compared stateful and stateless LSTM models for stock price prediction in the Indian stock market, 

recommending a stateless LSTM with a single hidden layer for most time series prediction problems. Siami-Namini 

et al. [16] found that BiLSTM outperformed ARIMA and LSTM models for stock index forecasting, with an average 

RMSE reduction of 93.11% and 37.78%, respectively, as the bi-directional training in BiLSTM captures additional 

features.  

The literature also covers interpretability and hybrid approaches in time series forecasting with deep learning. Lim 

and Zohren [17] surveyed encoder and decoder designs, iterative and direct methods for multi-horizon forecasting, 

and interpretability techniques, suggesting that hybrid models combining statistical and deep learning approaches can 

outperform pure methods. Varghese and Vanitha [18] performed time series analysis on monthly rainfall data from 



Kerala, India, using Statistical Package for the Social Sciences (SPSS) to extract trends and predict future rainfall 

values using regression coefficients, identifying significant variations in rainfall patterns across districts and seasons. 

Widiasari et al. [19] compared LSTM and multiple linear regression for flood prediction, with LSTM achieving lower 

error (3.6% MAPE) due to its ability to handle complex temporal data dependencies better. Marino et al. [20] 

investigated LSTM-based architectures for building energy load forecasting, with the LSTM-based Seq2Seq 

architecture excelling at handling variable sequence lengths. 

From the reviewed literature, LSTM and its variants consistently emerge as strong candidates for time series 

prediction tasks related to rainfall and flood forecasting. For instance, BiLSTM models such as those used by Siami-

Namini et al. [16] and Zenkner and Navarro-Martinez [11] demonstrate superior performance in capturing 

bidirectional temporal dependencies. Hybrid models integrating LSTM with statistical methods (e.g., ARIMA) or 

fuzzy logic [8], [9] further improve forecasting accuracy by modeling both linear and nonlinear trends. While ARIMA-

based models may outperform LSTM in certain structured datasets [8], deep learning models show greater adaptability 

in complex and noisy real-world data [14], [19]. Moreover, the encoder-decoder and attention-based architectures [6], 

[7] provide enhanced long-range temporal forecasting. In contrast to these approaches, our proposed method 

distinguishes itself through integration with real-time IoT data and dynamic deployment via Raspberry Pi, offering 

not only accurate predictions but also practical on-ground alerting capabilities. This places our system closer to real-

time operational flood management tools, a gap not fully addressed in many of the reviewed works. 

METHODOLOGY 
The dataset under analysis encompasses hourly weather observations for Matunga East, Dahisar, and Byculla, 

commencing from January 1, 1979 to February 8, 2024. It consists of 404,424, 395,400, and 402,082 records across 

27 columns respectively, incorporating diverse meteorological parameters such as hourly rainfall, temperature, 

visibility, dew point, wind speed, and humidity, among others. The range of meteorological parameters used in this 

study is shown in Figure 1, illustrating the data columns available for analysis. 

 

 
FIGURE. 1  DATA COLUMNS IN THE DATASET 

Categorical variables such as "weather_main" and "weather_description" characterize the basic atmospheric 

conditions and offer interesting study of the ambient environment around the received meteorological data.   Two 

instruments that can help to extract insights, identify trends, and create forecasts depending on the meteorological data 

are deep learning models and time-series analysis.   By means of validation and consistency checks, missing values 

and assurances of data quality should be addressed thereby preserving the integrity and dependability of the dataset 

across the analytical process. 



DEEP LEARNING MODEL DEVELOPMENT 
The technique is driven by the development of a Univariate Multi-Step Encoder-Decoder LSTM (Long Short-

Term Memory) model for rainfall prediction.   First starting with data preparation, the development loads historical 

rainfall data for all three areas and imports required libraries.   These well chosen datasets remove extraneous time 

data, then convert into a datetime format prior to indexing. 

  Simple imputation methods—where zeros replace missing values in the dataset—as indicated by the dataset 

source—address missing values within the dataset.   After treatment of missing entries, the datasets are placed under 

strict inspection for structure to ensure data integrity.   Following that, using the hourly rainfall observations, one 

single column—known as "rain_1h"—is extracted from the databases for more investigation.   General image of the 

features and temporal trends of the rainfall data is given by visualizations and statistical summaries. Year-wise rainfall 

trends visualized over the 40-year period are depicted in Figure 2, highlighting the seasonality and extremes captured 

in the dataset. 

 
FIGURE. 2 YEARLY RAINFALLS ACROSS 40 YEARS 

The datasets are partitioned into training, testing, and validation sets, with considerations for temporal dynamics, 

specifically focusing on monsoon months to mitigate data imbalance. The training set constitutes 80% of the data, 

while the testing and validation sets each encompass 10%. The process of data splitting ensures the preservation of 

temporal order and assists in evaluating model generalization. 

Next, the datasets undergo pre-processing steps tailored for LSTM model compatibility. This includes scaling of 

features using MinMaxScaler to constrain values within a specified range, thereby facilitating model convergence and 

stability during training. The pre-processing pipeline extends to windowing the data, thereby transforming the 

sequential rainfall observations into input-output pairs suitable for training the LSTM model. 

The LSTM architecture employed is structured as an Encoder-Decoder model, adept at capturing temporal 

dependencies within the data. The model's design incorporates encoder and decoder components, facilitating 

sequential processing and generation of multi-step forecasts. Hyperparameters, such as the number of hidden units 

and sequence lengths, are meticulously chosen to balance model complexity and predictive performance. 

Model training commences with the compilation of the LSTM model, utilizing the Huber loss function and the 

Adam optimizer to minimize prediction errors. The training process is monitored using appropriate callbacks, 

including model checkpointing and early stopping mechanisms to prevent overfitting and ensure model robustness. 

The Encoder-Decoder LSTM model used for multi-step rainfall forecasting is shown in Figure 3. 

 
FIGURE. 3 MODEL ARCHITECTURE 



Evaluation is conducted on the testing set, involving the assessment of model performance metrics. Post-

evaluation, the trained model undergoes testing on unseen data to validate its predictive capabilities in real-world 

scenarios. 

MOBILE APPLICATION DEVELOPMENT 
The application uses several significant technologies and strategies to achieve its objectives.   First it takes use of 

the Flutter framework and Dart programming language to enable single codebase building of cross-platform mobile 

apps.   Through enabling efficient development and deployment on several platforms, this approach increases 

accessibility and usability for end users. 

  Geo-location services are added into the application using the Geolocator package therefore granting access to 

the device's location data.   Once the user's coordinates are established, the program could find out whether the user 

is near designated flooding-sensitive locations including Matunga East, Dahisar, and Byculla. 

  Using the Haversine function of an angle, θ, the distances between the user's position and the approved flood-

risk zones are calculated.   This mathematical approach exactly finds the shortest distance between two locations on a 

sphere, so providing correct geographical measurements needed for flood prediction. The formula is as follows: 

ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒 (𝜃) =  𝑠𝑖𝑛2 (
𝜃

2
)                                                                         (1) 

 

After locating the user and estimating the distances to the specified flood-prone sites, the application begins API 

calls to acquire pertinent data for flood prediction.   Important information about user proximity to each location-based 

flood risk assessment and forecast rainfall levels comes from these API endpoints.  

  The application's user interface (UI) is supposed to provide basic information access together with required tools.   

Using the Google Maps Flutter plugin, the UI displays a map including pre-defined flood-sensitive sites marked by 

user position.   The UI also dynamically adjusts to display projected rainfall for the next several days and real-time 

flood projections. A snapshot of the mobile application interface with geo-located flood alert markers is presented in 

Figure 4. 

 
FIGURE. 4 FLOOD ALERT MOBILE APPLICATION 

 



The software interaction process from location detection to flood alert delivery is depicted in Figure 5. Error 

handling mechanisms are implemented to ensure robustness and reliability in API interactions and location services. 

In case of API call failures or location service issues, the application displays informative toast messages to alert users 

and maintain transparency regarding potential data discrepancies or service unavailability. The software interaction 

process from location detection to flood alert delivery is depicted in Figure 5. 

 

 
FIGURE. 5 SOFTWARE WORKFLOW 

DEPLOYMENT OF FLOOD ALERT SYSTEM 
 

The block diagram of the proposed system, illustrating data flow from APIs to end-user alerts, is shown in Figure 

6. Methodically installed deep learning models housed on a Raspberry Pi guarantee flawless IoT system functioning 

and integration.   The process begins initially with configuring and setting up the Raspberry Pi hardware to assure 

appropriate operating system (Raspbian) connection installation.   Since the models rely on obtaining real-time 

weather data from the OpenWeatherMap API, Wi-Fi provides a constant internet connection.   Once the hardware was 



set up, dependant program installation took front stage.   Along with the required libraries—NumPy, Requests, 

TensorFlow Lite, and FastAPI—this featured pip-based Python installation.   To ensure fit and accessibility for IoT 

ecosystem deployment, Python scripts for data collecting and API development also found place on the Raspberry Pi. 

  Next the Raspberry Pi housed the pre-trained TFLite models.   These models were designed using inference on 

resource- constrained IoT devices to ensure efficient system functioning.   The FastAPI tool then was configured as 

the model prediction interface.   This included outlining API endpoints for the intended weather forecasting sites, 

Matunga East, Byculla, and Dahisar. 

 

 
 

FIGURE. 6 BLOCK DIAGRAM OF THE PROPOSED SYSTEM 

Along the inference process, the Raspberry Pi receives requests providing latitude and longitude coordinates 

reflecting the target location for rainfall prediction.   Following the request, the Raspberry Pi looks for current weather 

information for the specified location on the OpenWeatherMap API.   This data consists of variables including hourly 

rainfall, or rain_1h.   After that, the obtained data is pre-processed to prepare it for usage as input to the ideal 

constructed model from an IoT framework. 

  Pre-processing consists in transforming the data into the appropriate form and scaling it with pre-trained scalers 

thereby ensuring fit with the models.   TensorFlow Lite models loads the data for inference once pre-processed.   Using 

the given data, the models generate forecasts of rainfall intensity over the given 120-hour period. 

  Following the inference, the model produces important understanding by means of post-processing activities.   

The forecasts are aggregated to determine daily overall precipitation.   Moreover, defined are thresholds to determine 

whether the anticipated precipitation beyond the recommended level suggestive of flood risk. 

  Then, sent to the client as JSON-formatted responses via the FastAPI endpoints inside the IoT ecosystem, are the 

inference results including flood risk assessments and expected rainfall intensities.   Clients can access this information 

by looking for the correct API endpoint with latitude and longitude coordinates corresponding to their desired location. 

  Moreover, constant data collection and improvements define the reliability of the system inside the IoT 

ecosystem.   Running constantly on the Raspberry Pi, the data collecting script periodically changes the weather data, 

therefore ensuring the models have access to the most current data for prediction. 

RESULTS AND DISCUSSION 
Performance evaluation of prediction models determines their dependability and efficiency most of the time for 

useful applications.   This paper explores the prediction performance of three models named Matunga East, Dahisar, 

and Byculla using significant criteria including Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root 

Mean Squared Error (RMSE as shown in Table 1).   These steps coupled with qualitative remarks provide insightful 

examination of the factors influencing the performance of every model, therefore providing a full knowledge of their 

predictive ability and their implications for decision-making processes. 

 
Table 1. Evaluation of models based on metrics 
Model MAE MSE RMSE 

Matunga East 0.1725 0.6520 0.8074 
Dahisar 0.1709 0.5261 0.7253 

Byculla 0.1853 0.6757 0.8220 

 



With a decent MAE of 0.1725, the model linked with Matunga East displays pretty accurate average predictions.   

Conversely, a higher MSE of 0.6520 and RMSE of 0.8074 suggest that noise or outliers in the dataset affects the 

general model performance even if individual mistakes might not be significant.   More data points mean more 

mistakes.   This suggests prospective challenges in effectively spotting basic trends in ever rising data volume. 

  The Dahisar model shows the lowest MAE among the three by means of values of 0.1709, thereby indicating 

improved accuracy in target variable prediction.   This model exhibits a relatively low MSE (0.5261) and RMSE 

(0.7253), which indicates an efficient performance considering the lowest quantity of non-zero values. 

  By comparison, the Byculla model reveals more errors than Matunga East and Dahisar.   With an MAE of 0.1853, 

MSE of 0.6757, and RMSE of 0.8220 this model produces generally less accurate projections.   Rather less training 

and validation data-points compromise the model's performance. 

  Analyzing daily rainfall test results for three separate locations—Byculla, Dahisar, and Matunga East—showcases 

considerable variations in both actual and forecast values across the recorded period.   With few spikes pointing to 

substantial precipitation occurrences, the actual rainfall data in Byculla (Figure. 7) reveal irregular swings from 

minimum to significant.   Conversely, the expected values quite closely correspond with the actual data, therefore 

demonstrating the capacity of the prediction model to reflect the temporal trends of the rainfall in this area. 

 

 
FIGURE. 7 BYCULLA TIME SERIES PLOT ACTUAL VS PREDICTED 

Although on a considerably smaller scale, Dahisar's daily rainfall patterns (Figure. 8) exhibit comparable chaotic 

behavior as those of Byculla.   The actual rainfall figures indicate regular increases, implying intermittent strong rain 

events combined with low intervals of precipitation.   The expected values almost match the actual data, therefore 

verifying the model's accuracy in forecasts of Dahisar's rainfall occurrences. 

 

 
FIGURE. 8 DAHISAR TIME SERIES PLOT ACTUAL VS PREDICTED 

The daily rainfall dynamics in Matunga East (Figure. 9) exhibit a different pattern from Byculla and Dahisar in 

more subdued oscillations.   Both actual and anticipated values show significantly less variation, suggesting in this 

region a more consistent precipitation pattern.   Still, occasional spikes in the actual rainfall data point to the presence 

of significant rainfall events, which the forecast model reasonably notes depending on the alignment between actual 

and projected values. 

 



 
FIGURE. 9 MATUNGA EAST TIME SERIES PLOT ACTUAL VS PREDICTED 

The study stresses overall the variability in daily rainfall patterns among the three places since the forecast model 

sufficiently captures the temporal dynamics in every site.   These findings emphasize the significance of accurate 

rainfall prediction models in understanding and minimizing the consequences of climatic variability and extreme 

weather events on metropolitan surroundings. 

CONCLUSION 
 

This work demonstrates how extremely successfully Encoder-Decoder LSTM models change early warning systems 

for flood prediction.   LSTM design has made effective rainfall pattern prediction possible, therefore enhancing the 

capacity to predict and lower the risks associated with flooding events.   Including a classification system based on 

pre-defined thresholds inside the framework not only helps to foresee quickly but also separates between prospective 

flood threats and normal conditions.   This function strengthens the practical utility of the recommended system by 

providing more actionable insights for campaigns of catastrophe readiness and response.   The integration of the 

models with a user-friendly flood alert system serves to underline the accessibility and real-time responsiveness of the 

suggested solution.   By means of IoT capabilities on Raspberry Pi devices and linking rainfall estimates to users' 

locations, the system provides timely distribution of emergency alerts, therefore mitigating the impact of probable 

floods on sensitive areas.   There are several ways the flood prediction and early warning system might be improved.   

Important areas of focus are geographic expansion to other flood-prone sites worldwide, optimization of system speed 

and efficiency using cache memory techniques, and use of computational resources for training larger and more 

sophisticated models.   Moreover offering opportunities for improved accuracy, scalability, and worldwide 

accessibility are lowering prediction thresholds by means of ground truth data integration and moving toward cloud-

based and web-based systems.   This study essentially underlines the critical requirement of proactive efforts in 

building resilience and readiness against natural calamities as well as assists flood prediction technologies to evolve.   

By means of continuous development and growth of this strategy, it is hoped to enable communities all around to 

better forecast, react to, and minimize the consequences of flooding events, therefore saving lives and safeguarding 

livelihoods. 
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