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Abstract— This study presents an loT-integrated weather forecasting framework that combines low-cost sensing hardware with a
deep learning engine for real-time decision support. The system employs an ESP8266 microcontroller connected to DHT11,
BMP180, and rainfall sensors to continuously capture temperature, humidity, pressure, and precipitation, transmitting the data via
MQTT to a Firebase cloud backend. Forecasting is powered by a hybrid architecture of Bidirectional LSTM and Multi-Head
Attention, enabling the model to capture both long-term dependencies and localized weather fluctuations. Field deployment
confirmed the reliability of the sensing unit in detecting microclimatic transitions, such as pressure dips and humidity spikes. The
proposed model achieved very low prediction errors (MSE: 0.0027, MAE: 0.0328, RMSE: 0.0519), significantly outperformed
benchmark models (reducing RMSE from 59.68 to 18.67 and MAE from 39.87 to 11.77), and demonstrated stable, unbiased
learning with Gaussian-like residuals and synchronized training—validation loss curves. The system is lightweight, scalable, and
real-time responsive, making it well-suited for localized forecasting in critical applications such as agriculture, transportation, and

disaster risk management.
Keywords—Decision Support System (DSS), Long Short- Term, Memory (LSTM), Internet of Things (10T)

INTRODUCTION

Accurate and timely weather forecasting has become crucial across a wide range of sectors, including agriculture,
transportation, and disaster response. Yet, existing weather forecasting systems encounter substantial obstacles in
delivering precise, real-time predictions due to the immense complexity and size of data from sources like IoT devices,
satellites, and weather stations. This project aims to develop a Decision Support System (DSS) for weather forecasting,
integrating advanced machine learning and big data analytics techniques to improve both prediction accuracy and
speed. By overcoming the limitations of current systems, the project seeks to provide dependable, up-to-the-minute

weather information essential for the efficiency and safety of industries reliant on specific weather conditions.

LITERATURE SURVEY

Weather forecasting plays a vital role in sectors like agriculture, transportation, and disaster management. Traditional
methods, such as Numerical Weather Prediction (NWP), use mathematical models to simulate atmospheric behavior
but face limitations in accuracy and computational intensity. These models struggle with real-time predictions,
especially for short-term weather phenomena like thunderstorms or microclimates.Recent advancements in weather

forecasting have seen a surge in machine learning and deep learning approaches, yet several challenges continue to
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limit their scalability, generalization, and real-world usability. Hakim et al. [1] introduced an open-source machine
learning framework using algorithms like XGBoost and Random Forest, primarily aimed at improving weather-based
agricultural predictions. While effective in enhancing accuracy, the framework is tailored to specific crops and regions,
limiting its scalability.Zoppi et al. [2] developed a web-based Decision Support System (DSS) for early flood alerts
and evacuation planning. By integrating live weather data, the system emphasizes accessibility and real-time response.

However, its heavy reliance on continuous data updates can affect reliability during critical events.

Sellila et al. [3] proposed a DSS to mitigate urban heat island effects through integrated modeling and optimization.
Despite showing practical potential, the approach depends on detailed urban datasets, which constrains its application
across varying cityscapes. Gavahi et al. [4] explored a hybrid deep learning system for crop yield forecasting by
combining multiple deep learning models. Although the system improved prediction accuracy, its dependence on large
historical datasets and high computational requirements pose scalability issues. Acarali et al. [5] introduced a spatial
DSS for nature-based urban climate interventions. Their system facilitates the monitoring of urban heat trends through
geospatial visualization. Nonetheless, its usability is limited to select urban environments where detailed spatial data
is available. A comprehensive review by the Journal of Geophysical Research: Atmospheres [6] evaluated the efficacy
of CNN, RNN, and LSTM models in precipitation forecasting. These models exhibit strong temporal and spatial

learning abilities but are challenged by data scarcity and model interpretability.

The American Meteorological Society [7] assessed user-centric design for DSS tools in weather forecasting. Findings
indicated that while user interfaces improved engagement, systems still suffer from high error rates and inefficiencies
in user interaction. Nature Communications [8] examined the prediction of extreme rainfall events using deep learning
models (CNN, LSTM, GRU). Although these models captured temporal-spatial trends well, they were limited by high
resource usage, lack of transparency, and difficulty handling uncertainty. A study in the Journal of Atmospheric and
Oceanic Technology [9] combined CNN, LSTM, and GRU networks to forecast tropical cyclone intensity. While
enhancing predictive power, concerns remain about poor generalization, data quality, and high computational
cost.Long-range weather prediction using deep learning, discussed by the Bulletin of the American Meteorological
Society [10], demonstrated improvements using CNN and recurrent architectures. Still, high processing costs and weak
interpretability hinder real-world adoption. Atmospheric Research [11] proposed a hybrid DL model for fog
forecasting. Despite its effectiveness in tracking fog patterns, generalizing across geographic locations and

computational demand remain major limitations.

Advances in Atmospheric Sciences [12] provided a broad review of DL in weather prediction. Although models have
shown potential, persistent challenges include low data availability, model clarity, and complexity in practical
deployment. Air quality forecasting via DL was studied by Atmospheric Environment [13], revealing limitations in
performance across diverse conditions due to data reliability and adaptability issues. Solar Energy [14] explored deep
learning applications in solar irradiance forecasting, identifying computational overhead and poor model adaptability
as the main hurdles to efficiency and scalability. “Analysis and Forecasting of Temporal Rainfall Variability Over

Hundred Indian Cities Using Deep Learning Approaches” (Earth Systems and Environment, April 2024) [15] applied



LSTM-based architectures to model rainfall patterns across diverse climatic zones in India. The study demonstrated
enhanced accuracy in capturing regional rainfall variability but also highlighted issues with model overfitting and

limited performance in data-scarce regions.

Finally, the Journal of Hydrology [16] evaluated precipitation forecasting using DL models. While demonstrating

promise, challenges persist in integrating hybrid methods, addressing data sparsity, and ensuring interpretability.



METHODOLOGY

This block diagram demonstrates the workflow of a weather forecasting Decision Support System (DSS):
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FIG 1: Workflow diagram showing data collection, transmission, preprocessing, LSTM-based processing, and output

display.

3.1. Data Collection

The ESP8266 microcontroller served as the foundation of the hardware setup due to its lightweight architecture and
built-in Wi-Fi. It interfaced with three environmental sensors: DHT11 for temperature and humidity, BMP180 for
barometric pressure, and a Rain Sensor Module for precipitation detection. Sensor data was acquired via GPIO pins

and managed through embedded firmware written using the Arduino IDE

3.2. Data Transmission

Sensor data was transmitted from the ESP8266 to the cloud using MQTT, a lightweight publish-subscribe protocol
suitable for constrained devices. The ESP8266 acted as the publisher, transmitting readings to designated topics, while
Firebase served as the broker and backend, storing data in real time. The system was evaluated for data consistency

and minimal packet loss under varying network conditions.

3.3. Data Preprocessing

The historical dataset consisted of approximately 3,400 records collected over a period of 10 years (2016-2025),

sourced from the Visual Crossing Weather API. Each record contains essential meteorological variables such as



temperature, humidity, precipitation, and sea-level pressure, along with contextual metadata including weather
conditions and timestamps. After preprocessing, the dataset was structured into 17 features suitable for multivariate
time-series forecasting.To ensure data quality and enhance learning efficiency, preprocessing was performed on the
historical dataset prior to model training. Irrelevant or low-variance columns such as snow, snow depth, severe risk,
name, stations, description, icon, sunrise, and sunset were removed. Categorical data in the conditions column was

transformed into one-hot encoded vectors using get dummies() for compatibility with neural network input formats.

The datetime field was converted into a standard timestamp format using pd.to_datetime(), and subsequently
decomposed into multiple temporal features: year, month, day, and weekday. These components were added as

separate columns to preserve temporal context.
3.4. LSTM Model

Long Short-Term Memory (LSTM) is a type of recurrent neural network designed specifically for sequence-based
tasks, such as time-series forecasting. Unlike traditional RNNs, which often lose important information due to
vanishing or exploding gradients, LSTM networks include a memory cell and three gates—input, forget, and output—
that regulate the flow of information. The forget gate decides what past information should be discarded, the input
gate updates the memory with new relevant data, and the output gate determines what information is passed to the
next time step. This mechanism allows LSTM to retain important trends over long periods while ignoring irrelevant
fluctuations. For weather prediction, this is particularly useful because atmospheric conditions often depend not only
on recent values but also on patterns observed hours or even days earlier. By capturing both short-term variations and

long-term dependencies, LSTM provides a reliable foundation for accurate multivariate weather forecasting.
3.4.1 Layer wise Functional Design

The core strength of the model lies in the thoughtful composition and sequencing of deep learning layers, each chosen

to solve specific challenges in weather forecasting from temporal and multivariate data:

Input Layer: The model ingests data through an input layer shaped as (10, 17), representing 10 sequential time steps,
each with 17 features—comprising 4 real-time sensor readings (temperature, humidity, precipitation, and pressure)

and 13 historically-derived statistical features.
Let the input sequence be denoted by:
X =[x1,%5,..%10] wherex, € R (1)

Bidirectional LSTM (64 units): This layer forms the temporal foundation of the model. It reads the input sequence in
both forward and backward directions, thereby capturing past trends and upcoming patterns. Unlike unidirectional
LSTMs, it allows the network to learn dependencies that span both preceding and succeeding time steps, which is

critical for the chaotic nature of weather data.Each LSTM cell computes hidden states using:
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FIG 2 : LSTM Model Architecture
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In the bidirectional setup, both a forward pass At and Ebackward pass are computed, and the outputs are

concatenated:

—
h, = [ht; E] (7

This allows the model to leverage both historical and forward-looking signals in the sequence.

Multi-Head Attention Layer: Equipped with 4 heads and a key dimension of 32, this layer enhances the model’s
interpretability and efficiency. It allows the network to attend to multiple parts of the sequence simultaneously. Each
head learns to focus on different dynamics—such as abrupt temperature changes or barometric pressure drops—

thereby contributing to a context-aware representation of the time series.For each head, attention is computed as:

AfT
Attention(@, K, V') = softmax (Q ) V

Vi (8)
Where:
e Q=XWY K=XWEV=XxW"
e dj, = 32 is the dimension of the keys.
Each head operates independently and their outputs are concatenated:
MultiHead (X) = Concat (headl, head4) Wo ©)

This mechanism allows simultaneous focus on multiple patterns—such as sudden humidity spikes or rapid pressure

drops.

Dropout (rate = 0.2): Introduced right after the attention output, this regularization layer randomly disables 20% of

neurons during training. To mitigate overfitting and improve generalization, dropout is applied:

Dropout(z) = z - Bernoulli(p) (10)

Where p=0.8 (i.e., 20% of neurons are randomly dropped).

Layer Normalization: Following the dropout, this layer ensures numerical stability by normalizing intermediate
outputs. It reduces internal covariate shift and helps accelerate training. Normalization stabilizes the learning process

by maintaining zero mean and unit variance across feature dimensions:



LayerNorm(z) = « (u> + 06

Vol +e (11)

Where p and 62 are the mean and variance of the inputs, and v, B are learnable parameters.

Global Average Pooling 1D: This layer aggregates time-series information into a fixed-length vector by averaging
over all time steps. This not only reduces dimensionality but also allows the model to focus on the most statistically
significant patterns rather than exact temporal positions. This operation reduces the temporal dimension by computing

the average across time steps for each feature dimension:

1 T
Zj = ? E ht.j
t=1 (12)

Where T=10 is the number of time steps, and h; is the activation of the j unit at time t.

Dense Layer (32 ReLU units): This fully connected layer acts as a feature translator, converting the pooled temporal
signal into meaningful intermediate representations using a non-linear ReL U activation function.This layer transforms

the pooled vector into higher-level abstract features using a fully connected layer followed by a ReLU activation:
z = ReLU(Wz + b) = max(0, Wz + b) (14)

This nonlinearity introduces expressiveness, enabling the model to learn complex interactions among the extracted

features.
3.4.2 Architectural Overview

Our model leverages a hybrid architecture built on Bidirectional LSTM and Multi-Head Attention, specifically
designed for sequential, multivariate weather data. By focusing exclusively on recurrent and attention-based
mechanisms, the model avoids convolutional overhead and prioritizes temporal learning, making it both lightweight
and highly specialized for time-series forecasting tasks. Constructed using the Keras Functional API, the architecture
begins with a Bidirectional LSTM (64 units) that captures both past and future patterns across 10 time steps of 17
features. Its output, enriched with contextual understanding, is passed into a Multi-Head Attention layer (4 heads, key
dimension = 32), which enhances interpretability by focusing on the most relevant temporal patterns—such as abrupt

pressure drops or humidity spikes.

To ensure generalization, a Dropout layer (rate 0.2) and Layer Normalization follow, regularizing the network and
stabilizing training. A Global Average Pooling 1D layer then compresses the sequence into a fixed vector, reducing
complexity while retaining statistical importance. This is followed by a Dense layer (32 ReLU units) for non-linear
interpretation, and an output layer producing forecasts for four weather variables: temperature, humidity, precipitation,

and pressure. The model is trained with the Adam optimizer (learning rate 0.001) and mean squared error (MSE) as



the loss function. This blend of memory retention (LSTM), focus (Attention), and interpretability (Dense layers)
makes the architecture robust, accurate, and adaptable to real-time forecasting environments—well-suited for

deployment in real-time meteorological decision support systems.

The Fig. 3 illustrates the temporal variations in temperature, humidity, and pressure collected from the deployed
hardware system between April 22nd and April 25th, 2025. The following observations support both the system’s
reliability and the dynamic behavior of local atmospheric conditions:Temperature Variability:The temperature
consistently fluctuated between 31.0°C and 33.5°C, with noticeable diurnal cycles. The gradual increase during
daytime and decline during the nighttime clearly aligns with expected solar radiation patterns. A significant
temperature drop post April 25th, 00:00, suggests the onset of a localized weather disturbance, which was accurately

captured in real-time.

Humidity Dynamics: Humidity trends exhibit high volatility, ranging from 59% to 72%, potentially indicating
transient cloud cover or brief precipitation events. Peaks observed around April 23rd and 24th midnight suggest
increased moisture levels, correlating with possible atmospheric instability that often precedes light showers or foggy

conditions.



RESULTS & DISCUSSION

Temperature Trend Over Time
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FIG 3 : Temporal variations of targeted variables

4.1. HARDWARE DATA ANALYSIS

Pressure Fluctuations:Atmospheric pressure remained within the range of 1010-1014 hPa, showing periodic
fluctuations every 8—12 hours. A prominent dip in pressure during the early hours of April 24th aligns with the

observed temperature decline and rising humidity, validating the system’s ability to capture weather system transitions

such as low-pressure zones.

These trends serve as direct input into the forecasting model. The timely and accurate capture of microclimatic

changes—such as humidity spikes or pressure drops—provides critical signals for short-term weather prediction and
route-specific alert generation.

4.2. MODEL EVALUATION

The hybrid Bidirectional LSTM with Multi-Head Attention model was trained for 100 epochs using a batch size of
32. The Adam optimizer was used with a learning rate of 0.001, and Mean Squared Error (MSE) served as the loss

function. Early stopping was employed to prevent overfitting, with monitoring on validation loss.
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Figure 4 : Graph representing training and validation loss over epochs

The loss curve provides a clear view of the model's learning progression across training epochs. The training loss
starts at approximately 0.045, indicating an initial mismatch between predictions and targets. However, both the
training and validation loss exhibit synchronized, smooth declines, with minimal divergence throughout the process.
This consistent gap implies that the model generalizes well and avoids overfitting.Notably, the validation loss mirrors
the training loss closely, which is a strong indicator of stable learning behavior. Convergence is observed around
epoch 20, beyond which both curves begin to plateau, marking the point of optimal training. These learning dynamics
confirm that the model effectively balances complexity and generalization—achieving high predictive performance

on unseen data without memorizing training patterns.

4.2.1. Qualitative Analysis

In our evaluation, the residual distribution forms a symmetric, bell-shaped curve centered around zero, resembling a
Gaussian distribution. This shape is a positive diagnostic sign, reflecting a model that makes unbiased predictions

without systematically overestimating or underestimating any of the four weather parameters.
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Figure 5: Residual Error Distribution

This symmetry indicates that errors are randomly distributed, and the absence of skew suggests a balanced
understanding of the data. It also implies that the model is not sensitive to outliers or seasonal noise—an essential
property when forecasting real-world weather conditions that naturally contain variability and occasional anomalies.
From a practical standpoint, this pattern boosts trust in the model’s reliability. A Gaussian-like residual curve affirms
that the model is neither overfitted to historical irregularities nor undertrained to general patterns. It reacts
proportionally to fluctuations, making it a stable choice for deployment in environments where false alerts or delayed

responses could have critical consequences.
4.2.2. Quantitative Metrics

To evaluate the performance of the proposed weather forecasting model, key error metrics were computed—each
highlighting different aspects of prediction quality: The model achieved an MSE of 0.0027, indicating minimal large
deviations between predicted and actual values. Since MSE penalizes larger errors more severely, this low score
confirms the model’s ability to capture underlying trends while avoiding significant prediction spikes.With an MAE
of 0.0328, the model demonstrates high consistency, maintaining an average prediction deviation of just ~3.3%.
Unlike MSE, MAE treats all errors equally, offering a practical sense of everyday accuracy and making it more
interpretable for real-world decision-making. The RMSE, computed as the square root of MSE, is 0.0519, reaffirming
the model’s low average error with a slight emphasis on larger deviations. This value further supports the model’s

robustness across different weather conditions and variable ranges.



Table I: Quantitative Metrics of the model

Mean Squared Error (MSE) 0.00229

Root Mean Squared Error (RMSE) 0.04786

Mean Absolute Error (MAE) 0.03277

Model Type CNN — LSTM — Multihead Attention
Attention Mechanism Multihead Attention Layer

Temp, Humidity, Pressure, Precipitation (real-time) + 13 historical

In Features i
put ture derived features

Output 4 weather variables

Together, these metrics provide a comprehensive snapshot of the model’s performance—balancing average prediction

fidelity with sensitivity to outliers.

4.3. Model Comparison with Reference Model

To assess the performance of our proposed hybrid BiLSTM-Multihead Attention model in a broader context, we
compared its forecasting accuracy against benchmark results reported in the peer-reviewed study titled "Analysis and
Forecasting of Temporal Rainfall Variability Over Hundred Indian Cities Using Deep Learning Approaches" (Earth
Systems and Environment, April 2024). The reference study evaluated four deep learning models (LSTM, GRU,
BiLSTM, and ConvlD LSTM) across rainfall categories, including a segment focused on very high intensity rainfall

cities, which aligns most closely with our target dataset.

The table below presents a comparison of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values

from the reference models under this category, alongside our proposed model’s performance.

Table 11 : Comparison of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values from the reference model

Model RMSE MAE

LSTM 743 48.73

GRU 59.68 39.87

BiLSTM 63.38 43.84
ConvDLSTM 115.15 78.36

Our Model(BiLSTM +MHA) 18.67 11.77




As observed, the proposed BiLSTM-Multihead Attention model significantly outperforms all models cited in the
reference study in terms of both RMSE and MAE. While the best-performing reference model (GRU) achieved an
RMSE of 59.68 and an MAE of 39.87, our model achieved substantially lower errors—18.67 RMSE and 11.77
MAE—indicating far greater accuracy in forecasting across weather variables. This improvement reflects the strength
of incorporating attention mechanisms and bidirectional temporal learning, which enable the model to capture both
short- and long-term dependencies more effectively.These results affirm the robustness and generalization capacity of
our model for complex weather forecasting tasks, particularly in high-impact and data-volatile environments like very

high intensity rainfall zones.

CONCLUSION AND FUTURE WORK

The Smart Weather Forecasting DSS developed in this work demonstrates a reliable and scalable solution for real-
time meteorological prediction by integrating [oT sensing, cloud communication, and deep learning. The system, built
on an ESP8266 microcontroller with temperature, humidity, pressure, and rainfall sensors, successfully transmitted
environmental data to Firebase through MQTT and generated short-term forecasts using a BiILSTM—-Multi-Head
Attention model. Field testing confirmed its ability to capture microclimatic variations such as pressure drops and
humidity spikes, while evaluation results showed very low error rates (MSE 0.0027, MAE 0.0328, RMSE 0.0519) and
a Gaussian-like residual distribution, indicating unbiased and stable predictions. Compared with benchmark models,
the proposed approach achieved substantial improvements, reducing RMSE from 59.68 to 18.67 and MAE from 39.87
to 11.77. The synchronized decline of training and validation loss further validated strong generalization without
overfitting. Overall, the system proved lightweight, responsive, and practical for localized forecasting, with clear
potential for applications in agriculture, transportation, and disaster risk management, and offers scope for future

expansion through additional sensors, distributed deployments, edge intelligence, and adaptive learning.
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