

Smart Weather Forecasting: An IoT-Integrated Decision Support System for Real-Time Analysis

Sonal Dubal¹, Amit Maurya², Usha Gupta³, Ekta Desai⁴, Anish Shirodkar⁵,
Arshad Syed⁶, Aum Jariwala⁷, Viddhesh Verma⁸

¹⁻⁸Thakur College of Engineering and Technology, Mumbai, India

¹sonaldubal468@gmail.com, ²amit.maurya021@gmail.com, ³usha.gupta@tcetmumbai.in,
⁴ekta.desai@tcetmumbai.in, ⁵anish08032003@gmail.com, ⁶sv.arshad065@gmail.com, ⁷aumjariwala@gmail.com,
⁸viddheshvarma21.08.2003@gmail.com

Abstract— This study presents an IoT-integrated weather forecasting framework that combines low-cost sensing hardware with a deep learning engine for real-time decision support. The system employs an ESP8266 microcontroller connected to DHT11, BMP180, and rainfall sensors to continuously capture temperature, humidity, pressure, and precipitation, transmitting the data via MQTT to a Firebase cloud backend. Forecasting is powered by a hybrid architecture of Bidirectional LSTM and Multi-Head Attention, enabling the model to capture both long-term dependencies and localized weather fluctuations. Field deployment confirmed the reliability of the sensing unit in detecting microclimatic transitions, such as pressure dips and humidity spikes. The proposed model achieved very low prediction errors (MSE: 0.0027, MAE: 0.0328, RMSE: 0.0519), significantly outperformed benchmark models (reducing RMSE from 59.68 to 18.67 and MAE from 39.87 to 11.77), and demonstrated stable, unbiased learning with Gaussian-like residuals and synchronized training-validation loss curves. The system is lightweight, scalable, and real-time responsive, making it well-suited for localized forecasting in critical applications such as agriculture, transportation, and disaster risk management.

Keywords— *Decision Support System (DSS), Long Short- Term, Memory (LSTM), Internet of Things (IOT)*

INTRODUCTION

Accurate and timely weather forecasting has become crucial across a wide range of sectors, including agriculture, transportation, and disaster response. Yet, existing weather forecasting systems encounter substantial obstacles in delivering precise, real-time predictions due to the immense complexity and size of data from sources like IoT devices, satellites, and weather stations. This project aims to develop a Decision Support System (DSS) for weather forecasting, integrating advanced machine learning and big data analytics techniques to improve both prediction accuracy and speed. By overcoming the limitations of current systems, the project seeks to provide dependable, up-to-the-minute weather information essential for the efficiency and safety of industries reliant on specific weather conditions.

LITERATURE SURVEY

Weather forecasting plays a vital role in sectors like agriculture, transportation, and disaster management. Traditional methods, such as Numerical Weather Prediction (NWP), use mathematical models to simulate atmospheric behavior but face limitations in accuracy and computational intensity. These models struggle with real-time predictions, especially for short-term weather phenomena like thunderstorms or microclimates. Recent advancements in weather forecasting have seen a surge in machine learning and deep learning approaches, yet several challenges continue to

limit their scalability, generalization, and real-world usability. Hakim et al. [1] introduced an open-source machine learning framework using algorithms like XGBoost and Random Forest, primarily aimed at improving weather-based agricultural predictions. While effective in enhancing accuracy, the framework is tailored to specific crops and regions, limiting its scalability. Zoppi et al. [2] developed a web-based Decision Support System (DSS) for early flood alerts and evacuation planning. By integrating live weather data, the system emphasizes accessibility and real-time response. However, its heavy reliance on continuous data updates can affect reliability during critical events.

Sellila et al. [3] proposed a DSS to mitigate urban heat island effects through integrated modeling and optimization. Despite showing practical potential, the approach depends on detailed urban datasets, which constrains its application across varying cityscapes. Gavahi et al. [4] explored a hybrid deep learning system for crop yield forecasting by combining multiple deep learning models. Although the system improved prediction accuracy, its dependence on large historical datasets and high computational requirements pose scalability issues. Acarali et al. [5] introduced a spatial DSS for nature-based urban climate interventions. Their system facilitates the monitoring of urban heat trends through geospatial visualization. Nonetheless, its usability is limited to select urban environments where detailed spatial data is available. A comprehensive review by the *Journal of Geophysical Research: Atmospheres* [6] evaluated the efficacy of CNN, RNN, and LSTM models in precipitation forecasting. These models exhibit strong temporal and spatial learning abilities but are challenged by data scarcity and model interpretability.

The American Meteorological Society [7] assessed user-centric design for DSS tools in weather forecasting. Findings indicated that while user interfaces improved engagement, systems still suffer from high error rates and inefficiencies in user interaction. *Nature Communications* [8] examined the prediction of extreme rainfall events using deep learning models (CNN, LSTM, GRU). Although these models captured temporal-spatial trends well, they were limited by high resource usage, lack of transparency, and difficulty handling uncertainty. A study in the *Journal of Atmospheric and Oceanic Technology* [9] combined CNN, LSTM, and GRU networks to forecast tropical cyclone intensity. While enhancing predictive power, concerns remain about poor generalization, data quality, and high computational cost. Long-range weather prediction using deep learning, discussed by the *Bulletin of the American Meteorological Society* [10], demonstrated improvements using CNN and recurrent architectures. Still, high processing costs and weak interpretability hinder real-world adoption. *Atmospheric Research* [11] proposed a hybrid DL model for fog forecasting. Despite its effectiveness in tracking fog patterns, generalizing across geographic locations and computational demand remain major limitations.

Advances in Atmospheric Sciences [12] provided a broad review of DL in weather prediction. Although models have shown potential, persistent challenges include low data availability, model clarity, and complexity in practical deployment. Air quality forecasting via DL was studied by *Atmospheric Environment* [13], revealing limitations in performance across diverse conditions due to data reliability and adaptability issues. *Solar Energy* [14] explored deep learning applications in solar irradiance forecasting, identifying computational overhead and poor model adaptability as the main hurdles to efficiency and scalability. "Analysis and Forecasting of Temporal Rainfall Variability Over Hundred Indian Cities Using Deep Learning Approaches" (Earth Systems and Environment, April 2024) [15] applied

LSTM-based architectures to model rainfall patterns across diverse climatic zones in India. The study demonstrated enhanced accuracy in capturing regional rainfall variability but also highlighted issues with model overfitting and limited performance in data-scarce regions.

Finally, the *Journal of Hydrology* [16] evaluated precipitation forecasting using DL models. While demonstrating promise, challenges persist in integrating hybrid methods, addressing data sparsity, and ensuring interpretability.

METHODOLOGY

This block diagram demonstrates the workflow of a weather forecasting Decision Support System (DSS):

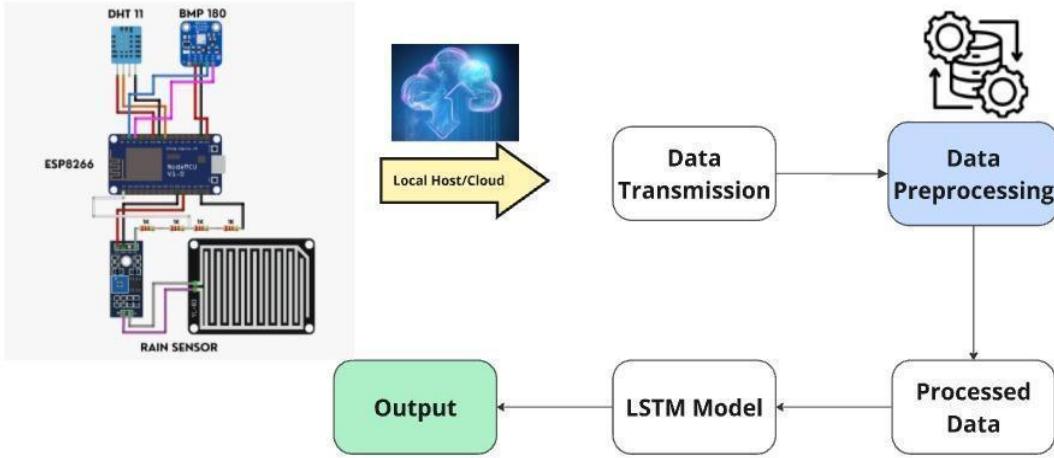


FIG 1: Workflow diagram showing data collection, transmission, preprocessing, LSTM-based processing, and output display.

3.1. Data Collection

The ESP8266 microcontroller served as the foundation of the hardware setup due to its lightweight architecture and built-in Wi-Fi. It interfaced with three environmental sensors: DHT11 for temperature and humidity, BMP180 for barometric pressure, and a Rain Sensor Module for precipitation detection. Sensor data was acquired via GPIO pins and managed through embedded firmware written using the Arduino IDE.

3.2. Data Transmission

Sensor data was transmitted from the ESP8266 to the cloud using MQTT, a lightweight publish-subscribe protocol suitable for constrained devices. The ESP8266 acted as the publisher, transmitting readings to designated topics, while Firebase served as the broker and backend, storing data in real time. The system was evaluated for data consistency and minimal packet loss under varying network conditions.

3.3. Data Preprocessing

The historical dataset consisted of approximately 3,400 records collected over a period of 10 years (2016–2025), sourced from the Visual Crossing Weather API. Each record contains essential meteorological variables such as

temperature, humidity, precipitation, and sea-level pressure, along with contextual metadata including weather conditions and timestamps. After preprocessing, the dataset was structured into 17 features suitable for multivariate time-series forecasting. To ensure data quality and enhance learning efficiency, preprocessing was performed on the historical dataset prior to model training. Irrelevant or low-variance columns such as snow, snow depth, severe risk, name, stations, description, icon, sunrise, and sunset were removed. Categorical data in the conditions column was transformed into one-hot encoded vectors using `get_dummies()` for compatibility with neural network input formats.

The datetime field was converted into a standard timestamp format using `pd.to_datetime()`, and subsequently decomposed into multiple temporal features: year, month, day, and weekday. These components were added as separate columns to preserve temporal context.

3.4. LSTM Model

Long Short-Term Memory (LSTM) is a type of recurrent neural network designed specifically for sequence-based tasks, such as time-series forecasting. Unlike traditional RNNs, which often lose important information due to vanishing or exploding gradients, LSTM networks include a memory cell and three gates—input, forget, and output—that regulate the flow of information. The forget gate decides what past information should be discarded, the input gate updates the memory with new relevant data, and the output gate determines what information is passed to the next time step. This mechanism allows LSTM to retain important trends over long periods while ignoring irrelevant fluctuations. For weather prediction, this is particularly useful because atmospheric conditions often depend not only on recent values but also on patterns observed hours or even days earlier. By capturing both short-term variations and long-term dependencies, LSTM provides a reliable foundation for accurate multivariate weather forecasting.

3.4.1 Layer wise Functional Design

The core strength of the model lies in the thoughtful composition and sequencing of deep learning layers, each chosen to solve specific challenges in weather forecasting from temporal and multivariate data:

Input Layer: The model ingests data through an input layer shaped as (10, 17), representing 10 sequential time steps, each with 17 features—comprising 4 real-time sensor readings (temperature, humidity, precipitation, and pressure) and 13 historically-derived statistical features.

Let the input sequence be denoted by:

$$X = [x_1, x_2, \dots x_{10}] \quad \text{where } x_t \in R^{17} \quad (1)$$

Bidirectional LSTM (64 units): This layer forms the temporal foundation of the model. It reads the input sequence in both forward and backward directions, thereby capturing past trends and upcoming patterns. Unlike unidirectional LSTMs, it allows the network to learn dependencies that span both preceding and succeeding time steps, which is critical for the chaotic nature of weather data. Each LSTM cell computes hidden states using:

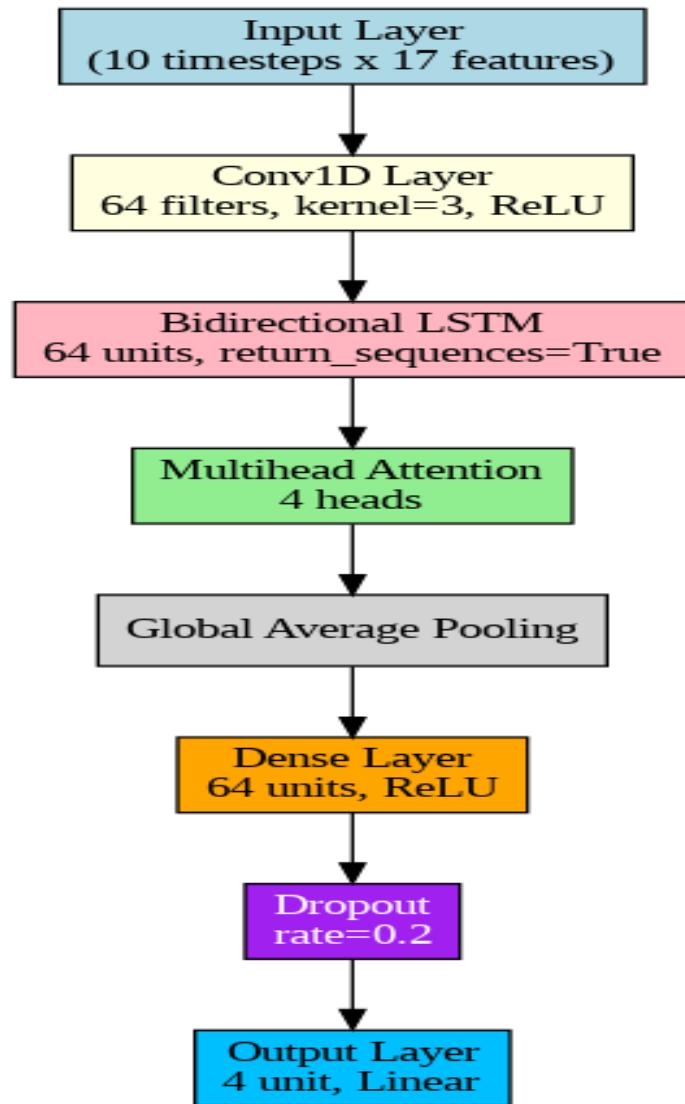


FIG 2 : LSTM Model Architecture

$$i_t = \sigma(W_i * [h_{t-1}, x_t] + b_i) \quad (2)$$

$$\tilde{C}_t = \tanh(W_c * [h_{t-1}, x_t] + b_c) \quad (3)$$

$$C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \quad (4)$$

$$O_t = \sigma(W_0 * [h_{t-1}, x_t] + b_0) \quad (5)$$

$$h_t = O_t \odot \tanh(C_t) \quad (6)$$

In the bidirectional setup, both a forward pass $\overrightarrow{h_t}$ and $\overleftarrow{h_t}$ are computed, and the outputs are concatenated:

$$h_t = [\overrightarrow{h_t}; \overleftarrow{h_t}] \quad (7)$$

This allows the model to leverage both historical and forward-looking signals in the sequence.

Multi-Head Attention Layer: Equipped with 4 heads and a key dimension of 32, this layer enhances the model's interpretability and efficiency. It allows the network to attend to multiple parts of the sequence simultaneously. Each head learns to focus on different dynamics—such as abrupt temperature changes or barometric pressure drops—thereby contributing to a context-aware representation of the time series. For each head, attention is computed as:

$$\text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V \quad (8)$$

Where:

- $Q = XW^Q, K = XW^K, V = XW^V$
- $d_k = 32$ is the dimension of the keys.

Each head operates independently and their outputs are concatenated:

$$\text{MultiHead}(X) = \text{Concat}(\text{head1}, \dots, \text{head4}) W_0 \quad (9)$$

This mechanism allows simultaneous focus on multiple patterns—such as sudden humidity spikes or rapid pressure drops.

Dropout (rate = 0.2): Introduced right after the attention output, this regularization layer randomly disables 20% of neurons during training. To mitigate overfitting and improve generalization, dropout is applied:

$$\text{Dropout}(z) = z \cdot \text{Bernoulli}(p) \quad (10)$$

Where $p=0.8$ (i.e., 20% of neurons are randomly dropped).

Layer Normalization: Following the dropout, this layer ensures numerical stability by normalizing intermediate outputs. It reduces internal covariate shift and helps accelerate training. Normalization stabilizes the learning process by maintaining zero mean and unit variance across feature dimensions:

$$\text{LayerNorm}(x) = \gamma \left(\frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} \right) + \beta \quad (11)$$

Where μ and σ^2 are the mean and variance of the inputs, and γ, β are learnable parameters.

Global Average Pooling 1D: This layer aggregates time-series information into a fixed-length vector by averaging over all time steps. This not only reduces dimensionality but also allows the model to focus on the most statistically significant patterns rather than exact temporal positions. This operation reduces the temporal dimension by computing the average across time steps for each feature dimension:

$$z_j = \frac{1}{T} \sum_{t=1}^T h_{t,j} \quad (12)$$

Where $T=10$ is the number of time steps, and $h_{t,j}$ is the activation of the j^{th} unit at time t .

Dense Layer (32 ReLU units): This fully connected layer acts as a feature translator, converting the pooled temporal signal into meaningful intermediate representations using a non-linear ReLU activation function. This layer transforms the pooled vector into higher-level abstract features using a fully connected layer followed by a ReLU activation:

$$z = \text{ReLU}(Wx + b) = \max(0, Wx + b) \quad (14)$$

This nonlinearity introduces expressiveness, enabling the model to learn complex interactions among the extracted features.

3.4.2 Architectural Overview

Our model leverages a hybrid architecture built on Bidirectional LSTM and Multi-Head Attention, specifically designed for sequential, multivariate weather data. By focusing exclusively on recurrent and attention-based mechanisms, the model avoids convolutional overhead and prioritizes temporal learning, making it both lightweight and highly specialized for time-series forecasting tasks. Constructed using the Keras Functional API, the architecture begins with a Bidirectional LSTM (64 units) that captures both past and future patterns across 10 time steps of 17 features. Its output, enriched with contextual understanding, is passed into a Multi-Head Attention layer (4 heads, key dimension = 32), which enhances interpretability by focusing on the most relevant temporal patterns—such as abrupt pressure drops or humidity spikes.

To ensure generalization, a Dropout layer (rate 0.2) and Layer Normalization follow, regularizing the network and stabilizing training. A Global Average Pooling 1D layer then compresses the sequence into a fixed vector, reducing complexity while retaining statistical importance. This is followed by a Dense layer (32 ReLU units) for non-linear interpretation, and an output layer producing forecasts for four weather variables: temperature, humidity, precipitation, and pressure. The model is trained with the Adam optimizer (learning rate 0.001) and mean squared error (MSE) as

the loss function. This blend of memory retention (LSTM), focus (Attention), and interpretability (Dense layers) makes the architecture robust, accurate, and adaptable to real-time forecasting environments—well-suited for deployment in real-time meteorological decision support systems.

The Fig. 3 illustrates the temporal variations in temperature, humidity, and pressure collected from the deployed hardware system between April 22nd and April 25th, 2025. The following observations support both the system's reliability and the dynamic behavior of local atmospheric conditions:Temperature Variability: The temperature consistently fluctuated between 31.0°C and 33.5°C, with noticeable diurnal cycles. The gradual increase during daytime and decline during the nighttime clearly aligns with expected solar radiation patterns. A significant temperature drop post April 25th, 00:00, suggests the onset of a localized weather disturbance, which was accurately captured in real-time.

Humidity Dynamics: Humidity trends exhibit high volatility, ranging from 59% to 72%, potentially indicating transient cloud cover or brief precipitation events. Peaks observed around April 23rd and 24th midnight suggest increased moisture levels, correlating with possible atmospheric instability that often precedes light showers or foggy conditions.

RESULTS & DISCUSSION

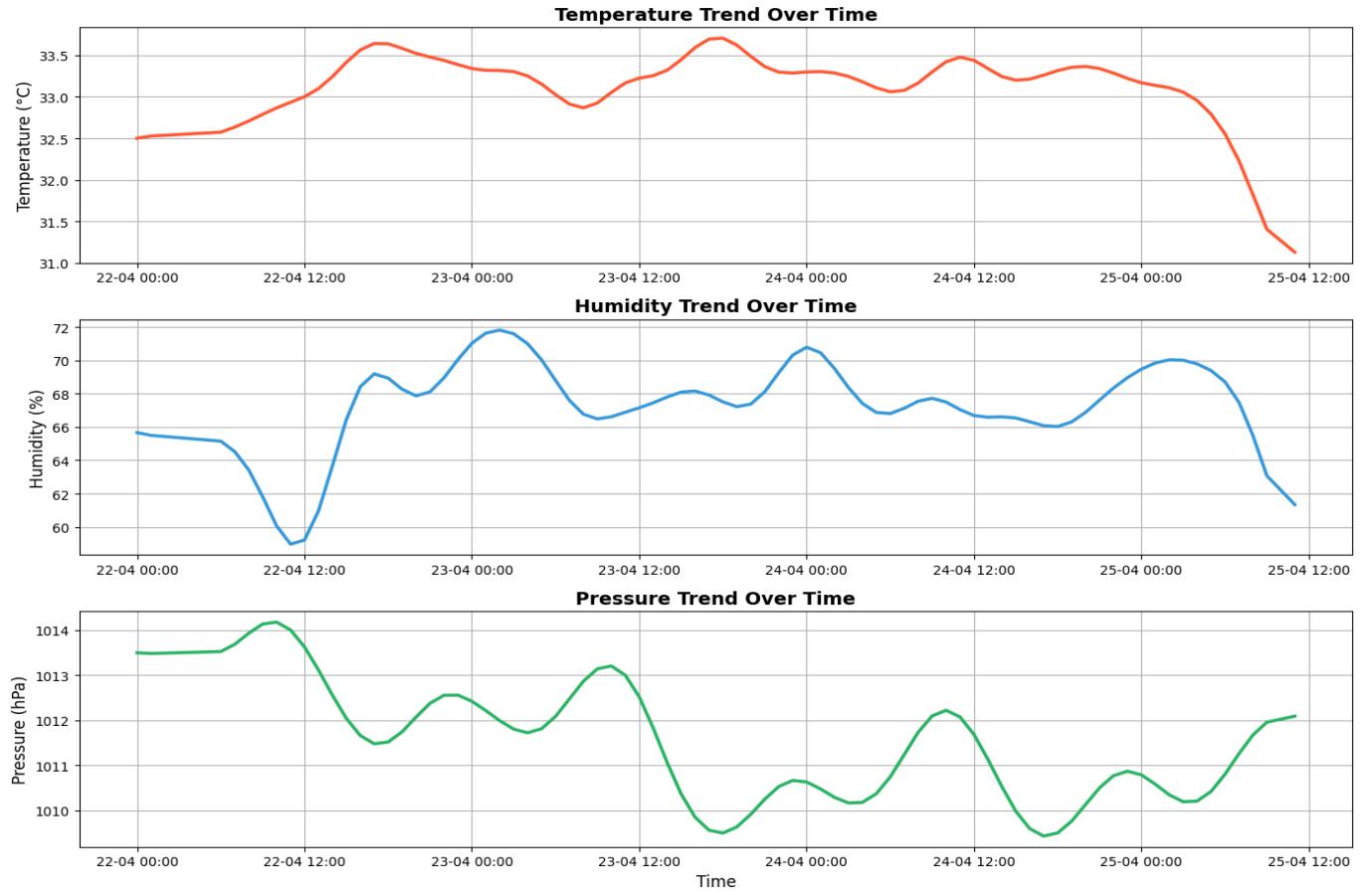


FIG 3 : Temporal variations of targeted variables

4.1. HARDWARE DATA ANALYSIS

Pressure Fluctuations: Atmospheric pressure remained within the range of 1010–1014 hPa, showing periodic fluctuations every 8–12 hours. A prominent dip in pressure during the early hours of April 24th aligns with the observed temperature decline and rising humidity, validating the system's ability to capture weather system transitions such as low-pressure zones.

These trends serve as direct input into the forecasting model. The timely and accurate capture of microclimatic changes—such as humidity spikes or pressure drops—provides critical signals for short-term weather prediction and route-specific alert generation.

4.2. MODEL EVALUATION

The hybrid Bidirectional LSTM with Multi-Head Attention model was trained for 100 epochs using a batch size of 32. The Adam optimizer was used with a learning rate of 0.001, and Mean Squared Error (MSE) served as the loss function. Early stopping was employed to prevent overfitting, with monitoring on validation loss.

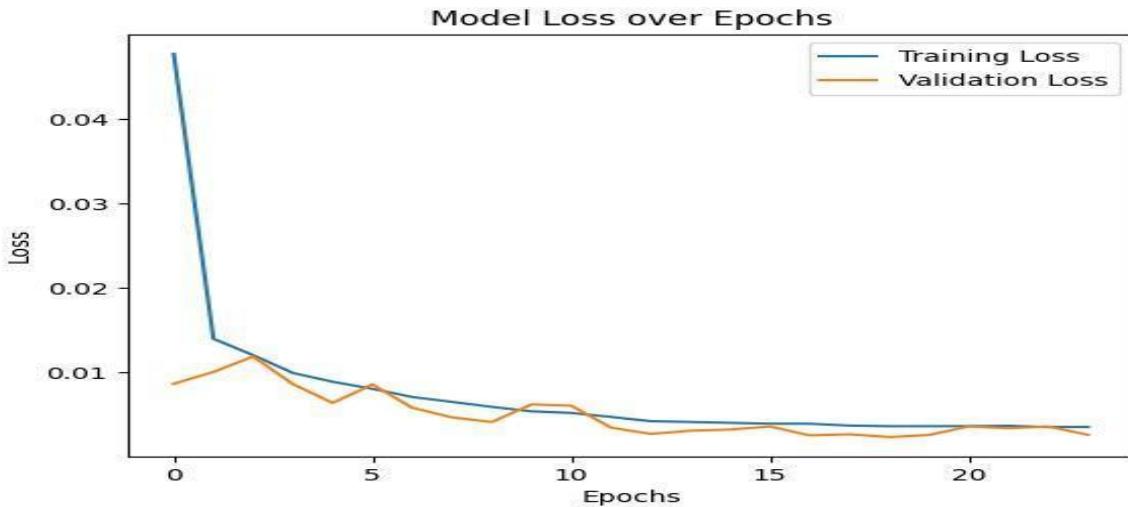


Figure 4 : Graph representing training and validation loss over epochs

The loss curve provides a clear view of the model's learning progression across training epochs. The training loss starts at approximately 0.045, indicating an initial mismatch between predictions and targets. However, both the training and validation loss exhibit synchronized, smooth declines, with minimal divergence throughout the process. This consistent gap implies that the model generalizes well and avoids overfitting. Notably, the validation loss mirrors the training loss closely, which is a strong indicator of stable learning behavior. Convergence is observed around epoch 20, beyond which both curves begin to plateau, marking the point of optimal training. These learning dynamics confirm that the model effectively balances complexity and generalization—achieving high predictive performance on unseen data without memorizing training patterns.

4.2.1. Qualitative Analysis

In our evaluation, the residual distribution forms a symmetric, bell-shaped curve centered around zero, resembling a Gaussian distribution. This shape is a positive diagnostic sign, reflecting a model that makes unbiased predictions without systematically overestimating or underestimating any of the four weather parameters.

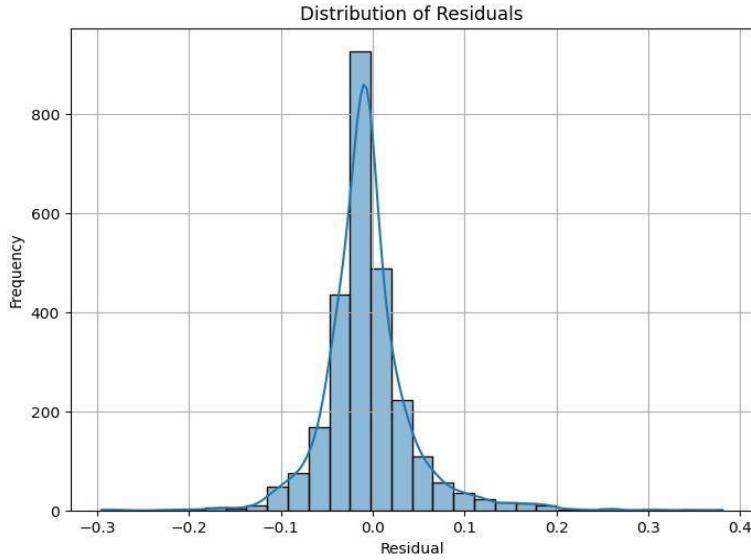


Figure 5: Residual Error Distribution

This symmetry indicates that errors are randomly distributed, and the absence of skew suggests a balanced understanding of the data. It also implies that the model is not sensitive to outliers or seasonal noise—an essential property when forecasting real-world weather conditions that naturally contain variability and occasional anomalies. From a practical standpoint, this pattern boosts trust in the model's reliability. A Gaussian-like residual curve affirms that the model is neither overfitted to historical irregularities nor undertrained to general patterns. It reacts proportionally to fluctuations, making it a stable choice for deployment in environments where false alerts or delayed responses could have critical consequences.

4.2.2. Quantitative Metrics

To evaluate the performance of the proposed weather forecasting model, key error metrics were computed—each highlighting different aspects of prediction quality: The model achieved an MSE of 0.0027, indicating minimal large deviations between predicted and actual values. Since MSE penalizes larger errors more severely, this low score confirms the model's ability to capture underlying trends while avoiding significant prediction spikes. With an MAE of 0.0328, the model demonstrates high consistency, maintaining an average prediction deviation of just $\sim 3.3\%$. Unlike MSE, MAE treats all errors equally, offering a practical sense of everyday accuracy and making it more interpretable for real-world decision-making. The RMSE, computed as the square root of MSE, is 0.0519, reaffirming the model's low average error with a slight emphasis on larger deviations. This value further supports the model's robustness across different weather conditions and variable ranges.

Table I: Quantitative Metrics of the model

Metric	Value
Mean Squared Error (MSE)	0.00229
Root Mean Squared Error (RMSE)	0.04786
Mean Absolute Error (MAE)	0.03277
Model Type	CNN → LSTM → Multihead Attention
Attention Mechanism	Multihead Attention Layer
Input Features	Temp, Humidity, Pressure, Precipitation (real-time) + 13 historical derived features
Output	4 weather variables

Together, these metrics provide a comprehensive snapshot of the model's performance—balancing average prediction fidelity with sensitivity to outliers.

4.3. Model Comparison with Reference Model

To assess the performance of our proposed hybrid BiLSTM-Multihead Attention model in a broader context, we compared its forecasting accuracy against benchmark results reported in the peer-reviewed study titled "Analysis and Forecasting of Temporal Rainfall Variability Over Hundred Indian Cities Using Deep Learning Approaches" (Earth Systems and Environment, April 2024). The reference study evaluated four deep learning models (LSTM, GRU, BiLSTM, and Conv1D LSTM) across rainfall categories, including a segment focused on very high intensity rainfall cities, which aligns most closely with our target dataset.

The table below presents a comparison of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values from the reference models under this category, alongside our proposed model's performance.

Table II : Comparison of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values from the reference model

Model	RMSE	MAE
LSTM	74.3	48.73
GRU	59.68	39.87
BiLSTM	63.38	43.84
ConvDLSTM	115.15	78.36
Our Model(BiLSTM +MHA)	18.67	11.77

As observed, the proposed BiLSTM-Multihead Attention model significantly outperforms all models cited in the reference study in terms of both RMSE and MAE. While the best-performing reference model (GRU) achieved an RMSE of 59.68 and an MAE of 39.87, our model achieved substantially lower errors—18.67 RMSE and 11.77 MAE—indicating far greater accuracy in forecasting across weather variables. This improvement reflects the strength of incorporating attention mechanisms and bidirectional temporal learning, which enable the model to capture both short- and long-term dependencies more effectively. These results affirm the robustness and generalization capacity of our model for complex weather forecasting tasks, particularly in high-impact and data-volatile environments like very high intensity rainfall zones.

CONCLUSION AND FUTURE WORK

The Smart Weather Forecasting DSS developed in this work demonstrates a reliable and scalable solution for real-time meteorological prediction by integrating IoT sensing, cloud communication, and deep learning. The system, built on an ESP8266 microcontroller with temperature, humidity, pressure, and rainfall sensors, successfully transmitted environmental data to Firebase through MQTT and generated short-term forecasts using a BiLSTM–Multi-Head Attention model. Field testing confirmed its ability to capture microclimatic variations such as pressure drops and humidity spikes, while evaluation results showed very low error rates (MSE 0.0027, MAE 0.0328, RMSE 0.0519) and a Gaussian-like residual distribution, indicating unbiased and stable predictions. Compared with benchmark models, the proposed approach achieved substantial improvements, reducing RMSE from 59.68 to 18.67 and MAE from 39.87 to 11.77. The synchronized decline of training and validation loss further validated strong generalization without overfitting. Overall, the system proved lightweight, responsive, and practical for localized forecasting, with clear potential for applications in agriculture, transportation, and disaster risk management, and offers scope for future expansion through additional sensors, distributed deployments, edge intelligence, and adaptive learning.

REFERENCES

- [1] Alegavi, S., & Sedamkar, R. (2025), “Optimizing Remote Sensing Image Retrieval Through a Hybrid Methodology”, Journal of Imaging, MDPI, 11(6), 179. <https://doi.org/10.3390/jimaging11060179>
- [2] Yogesh Thakare, U. . Wankhade, and Hemant Kasturiwale, “Intelligent Life Saver System for People Living in Earthquake Zone”. International Journal of Next-Generation Computing, vol. 14, no. 1, Feb. 2023, DOI:10.47164/ijngc.v14i1.1040
- [3] S. Alegavi, P. Janrao, C. Mahajan, R. Thakkar, V. Pandya, H. Kasturiwale, “Weather forecasting using IoT and neural network for sustainable agriculture”, American Institute of Physics, AIP Conf. Proc. 2842, 040003 (2023), Volume 2842, Issue 1, 12 October 2023, <https://doi.org/10.1063/5.0176348>
- [4] Akshay Utane, Sharad Mohod, Ashay Rokade, Yogesh Thakare, Hemant Kasturiwale, “An Ensemble Learning with Deep Feature Extraction Approach for Recognition of Traffic Signs in Advanced Driving Assistance Systems” International Journal of Intelligent Systems and Applications in Engineering, 12(3), 1222–1229. <https://ijisae.org/index.php/IJISAE/article/view/5402>
- [5] M. M. Rahman Khan, Md. Abu Bakr Siddique, S. Sakib, A. Aziz, I. K. Tasawar, Z. Hossain, Prediction of Temperature and Rainfall in Bangladesh using Long Short Term Memory Recurrent Neural Networks, 4th International Symposium on Multidisciplinary Studies and

Innovative Technologies, IEEE, 22-24 October, 2020, TURKEY, https://doi.org/10.1109/ISMSIT50672.2020.9254585.

- [6] B. Nemade, S. Alegavi and V. Bharadi, "Graph Attention Dialogue Network Based Drug Recommendation Model for Next-Gen Healthcare and Consumer-Centric Devices," in IEEE Transactions on Consumer Electronics, doi: 10.1109/TCE.2025.3540448, https://ieeexplore.ieee.org/document/10879252
- [7] Sojung An, Tae-Jin Oh, Eunha Sohn, Donghyun Kim, "Deep learning for precipitation nowcasting: A survey from the perspective of time series forecasting", Expert Systems with Applications, Volume 268, 2025, 126301, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2024.126301.
- [8] Shen, Chuhui & Hou, Hao & Zheng, Yaoyao & Murayama, Yuji & Wang, Ruci & Hu, Tangao. (2022). Prediction of the future urban heat island intensity and distribution based on landscape composition and configuration: A case study in Hangzhou. Sustainable Cities and Society. 83. 103992. 10.1016/j.scs.2022.103992.
- [9] Weiguo Zhao, Zhenxing Zhang, Nima Khodadadi, Liying Wang, "A deep learning model coupled with metaheuristic optimization for urban rainfall prediction", Journal of Hydrology, Volume 651, 2025, 132596, ISSN 0022-1694, <https://doi.org/10.1016/j.jhydrol.2024.132596>. (https://www.sciencedirect.com/science/article/pii/S0022169424019929)
- [10] S. Alegavi, R.R. Sedamkar, "Implementation of Deep Convolutional Neural Network for Classification of Multiscaled & Multiangled Remote Sensing Scene", International Journal on Soft Computing approaches for image analysis in practical scenario: Challenges, Solutions and Applications, Intelligent Decision Technologies, 14 (2020) 21–34, DOI: 10.3233/IDT-190076 IOS Press February 2020. (Scopus, Web of Science)
- [11] Yasavoli, Behshid & Habibirad, Arezou & Javanshiri, Zohreh. (2025). A hybrid deep learning model in predicting weather temperature. Earth Science Informatics. 18. 10.1007/s12145-025-01963-1.
- [12] Tushar H. Jaware, Hemant Kasturiwale, Rashmi Thakur, Mayur D. Jakhete, Manoj Chavan, Milind Rane."Deep Learning Model for Colon Cancer Classification using InceptionV3" J.ElectricalSystems20-4s(2024):132-139, Vol. 20 No. 4s (2024): DOI: https://doi.org/10.52783/jes.1862
- [13] Huang, M.-L., Chamnisampan, N., & Ke, Y.-R. (2025). A Deep Learning Model Integrating EEMD and GRU for Air Quality Index Forecasting. Atmosphere, 16(9), 1095. <https://doi.org/10.3390/atmos16091095>
- [14] S. S. Alegavi and R.R. Sedamkar, "Improving Classification Error for Mixed Pixels in Satellite Images using Soft Thresholding Technique", in Second International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE Digital Library, INSPEC Accession Number: 18510845, DOI: 10.1109/ICCONS.2018.8663002, 14-15 June 2018.
- [15] Wang, Chong & Li, Xiaofeng & Zheng, Gang. (2024). Tropical cyclone intensity forecasting using model knowledge guided deep learning model. Environmental Research Letters. 19. 10.1088/1748-9326/ad1bde.
- [16] Swati Bhisikar, Shreya Sawant, Tanvi Sawant , Sayali Narale , Hemant Kasturiwale, HAND GESTURE CONTROLLED POWERPOINT PRESENTATION USING OPENCV" European Chemical Bulletin , Volume -12 , Special Issue-3 : Page: 5137 – 5145, June 2023; DOI:10.31838/ecb/2023.12.s3.572