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Abstract. Domain adaptation (DA) is essential in remote sensing image analysis, where models frequently encounter
substantial performance drops due to domain shift—a result of distributional discrepancies across datasets sourced from
heterogeneous sensors, platforms, and imaging conditions. This comparative study evaluates three leading unsupervised DA
algorithms—Deep CORAL, Domain Adaptation Network (DAN), and Domain-Adversarial Neural Network (DANN)—on
four major aerial image benchmarks, each presenting unique sensor characteristics. Six semantically aligned scene classes are
selected to facilitate a rigorous assessment of how each technique manages sensor-induced and platform-driven variability.
Through extensive experimentation and interpretability analyses, we quantify strengths and limitations of each approach,
aiming to offer clear guidelines for DA algorithm selection in practical, sensor-diverse remote sensing tasks.
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INTRODUCTION

Remote sensing imagery has become indispensable to disciplines such as land cover mapping, urban development
monitoring, disaster assessment, and global environmental change analysis. Advances in satellite and airborne imaging
systems have produced vast amounts of high-resolution, multi-sensor data, greatly benefiting machine learning-driven
automation of image classification tasks [1][2]. However, a central challenge persists: the phenomenon of “domain
shift”. This describes the degradation in model accuracy when algorithms trained in one domain (source) fail to
generalize to new domains (target) caused by differences in imaging sensors, acquisition platforms, spatial and spectral
characteristics, atmospheric conditions, or even societal and temporal changes [3].

For example, an image classification model trained on the AID dataset (Google Earth multisensory imagery) may not
succeed when deployed on the UCMerced dataset (collected by USGS aircrafts), due to differences in resolution,
compression artifacts, color palettes, and viewpoint angles. The domain gap is therefore not merely semantic, but
fundamentally rooted in sensor and acquisition heterogeneity—posing a substantial obstacle to the operational
scalability of remote sensing models [3][4].

Recent years have witnessed the emergence of domain adaptation (DA) techniques designed to counteract such
distribution mismatches between source and target data. This paper investigates three mainstream unsupervised DA
strategies—DeepCORAL[5], DAN[6], and DANNJ[7][8]—and systematically benchmarks them on four aerial scene
classification datasets with six harmonized semantic classes. Our goal is to provide insight into how such methods
perform across significant sensor and platform-related domain shifts, a frontier that remains underexplored in the
remote sensing community [3][4].
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RELATED WORK

The growing interest in domain adaptation for remote sensing has led to a taxonomy of approaches:
e Feature Alignment Methods: Early work, such as Correlation Alignment (CORAL), focused on matching
the distribution of shallow or deep feature spaces by aligning second-order statistics (covariance) between
source and target domains. Deep CORAL extends this concept to deep neural network features [4][5].
® Distribution Distance Minimization: Domain Adaptation Network (DAN) utilizes measures like
Maximum Mean Discrepancy (MMD) at multiple neural layers, enabling alignment of more complex,
nonlinear data distributions [3].
® Adversarial Methods: Domain-Adversarial Neural Network (DANN) advances a paradigm where a
domain discriminator tries to distinguish source from target features, while the feature extractor is trained
(via a gradient reversal layer) to produce domain-invariant representations, facilitating robust transfer
learning [7][8].
In remote sensing, DA has been explored for multispectral, hyperspectral, and panchromatic scenes, with prior works
illustrating both the challenges and the promise of such approaches [3]. However, systematic and comparative studies
focusing on aerial scene classification using data from multiple, disparate sensors are relatively scarce [4].

DATASETS AND SENSOR CHARACTERISTICS

This study uses four benchmark datasets, each with a distinct sensor and collection profile, illustrating the spectrum
of domain variability encountered in remote sensing.

Dataset Summary

TABLE 1: Dataset description

Dataset Sensor/Platform Resolutio  Classes Used / Description
n Total
AID [10] Google Earth 0.5-8 m 6/30 Diverse locations, varied sources
(multi-sensor)
NWPU [11] Google Earth 0.2-30 m 6/45 Greater spatial detail than AID
(multi-source)
PatternNet [12]  Aircraft/Aerial ~0.06 m 6/38 Ultra-high spatial resolution, rich
texture
UCMerced [13]  USGS aircraft 0.3m 6/21 Widely used aerial scene benchmark

Common Class Selection

To ensure consistency, we extract six common classes namely Airplane, Beach, Dense Residential, Forest, Sparse
Residential and Storage Tank from each dataset as shown in figure 1.
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FIG 1. Sample image from each class across the different datasets. The first row shows images from the NWPU dataset, followed
by samples from PatternNet, AID, and UCMerced

Sensor Variability

Each dataset reflects sensor differences:
® Spatial resolution: PatternNet presents ultra-high resolution, whereas AID and NWPU have broader and
lower resolution ranges.
® Acquisition platform: UCMerced is based on aircraft imagery; AID and NWPU rely on aggregated
satellite/aerial imagery from Google Earth.
® Compression and visual artifacts: Google Earth datasets introduce color tone variations and probable
compression artifacts, enhancing domain discrepancies.
Such diverse acquisition conditions represent ideal testbeds for benchmarking DA methods, as they closely reflect
real-world operational scenarios.

Domain Gap Quantification via Fréchet Inception Distance (FID)

While domain shift in remote sensing is often attributed to differences in sensor platforms, resolutions, and acquisition
conditions, we quantitatively assess these shifts using the Fréchet Inception Distance (FID) [14] [15]. FID measures
the distributional distance between feature embeddings of two datasets, capturing both first and second-order statistics.
Lower FID indicates higher similarity between datasets.

We computed FID scores for all 12 source-target combinations using InceptionV3 activations on the six aligned
classes across datasets (Airplane, Beach, Dense Residential, Forest, Sparse Residential, Storage Tank). Results are
summarized in Table 2.

TABLE 2: FID Score Matrix Between Datasets



Source — Target NWPU PatternNet AID UCMerced

NWPU — 165.68 136.06 252.68
PatternNet 165.68 — 242.45 212.71
AID 136.06 242.45 — 296.53
UCMerced 252.68 212.71 296.53 —

Based on FID scores in Table 2 we observe that AID and NWPU show the smallest domain gap (FID=136.06), making
them a relatively easy adaptation pair. Conversely, AID and UCMerced (FID=296.53) exhibit the largest distributional
discrepancy, highlighting a hard domain transfer case. PatternNet displays moderate similarity with UCMerced but
diverges significantly from AID, likely due to its ultra-high spatial resolution and low background clutter.

To better interpret the relative difficulty of adaptation tasks, we categorize the domain shifts using FID thresholds.
Table 3 provides a ranked summary of selected source-target pairs, their FID values, and qualitative difficulty levels
based on empirically observed accuracy drops and distributional divergence.[16][17]

TABLE 3: FID Score Matrix Between Datasets

Source — Target FID Score Difficulty Level
AID - UCMerced 296.53 Hard
UCMerced - NWPU 252.68 Hard
PacternNer - AID 242.45 Hard
PatternNet - UCMerced 212.71 Medium
NWPU — PactcernNet 165.68 Medium
NWPU - AID 136.06 Easy
METHODOLOGY
A. Problem Setup

Let the labeled source domain be: Dg = {(x{, y{ )}Iivj1 , and the unlabeled target domain be: D, = {(xjt)}yil. The task

is to optimize a classifier using D; that performs effectively on D; regardless of the domain shift.
B. Techniques Compared

1. Deep CORAL: As shown in Figure 2(a) it aligns second-order statistics (covariance) of deep features between
source and target domains; it is computationally lightweight and easy to integrate [13].

2. DAN: As shown in Figure 2(b) it employs multi-kernel MMD across several network layers to achieve more
flexible, nonparametric distribution alignment between source and target representations [12].

3. DANN: As shown in Figure 2(c) it incorporates a domain discriminator connected via a Gradient Reversal
Layer, enforcing feature extractor outputs that are both discriminative for the classification task and
indistinguishable between domains, through adversarial training [12].
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Fig 2. Block diagram of Domain Adaptation Techniques namely (a) Deep CORAL, (b) DAN and (C) DANN.

C. Architecture

All models employ Resnet50 as the backbone feature extractor, balancing computational efficiency with proven
effectiveness in remote sensing applications. The classification head uses softmax activation, and for adversarial
methods (e.g., DANN), a domain classification branch is introduced. All images are resized and standardized to 128
x 128 pixels.

EXPERIMENTAL SETUP

A. Training Protocol

We used the Adam optimizer with a learning rate of 1 x 10"-4 to improve the model. This is a conventional number
that balances speed of convergence and stability. The training used a batch size of 32 over 10 epochs, which allowed
for enough iterations for the model to converge and kept the compute efficient. The loss structure was designed as a
composite loss function, encompassing cross-entropy loss for classification tasks and integrating supplementary
domain adaption components based on the specific approach utilized. These encompassed Maximum Mean
Discrepancy (MMD) for the Deep Adaptation Network (DAN), CORAL loss for DeepCORAL, and domain
adversarial loss for Domain-Adversarial Neural Networks (DANN). For DANN, a progressive domain loss weight
was utilized to stabilize the adversarial training process by incrementally enhancing the impact of the domain classifier
throughout training.[18][19]



B. Evaluation Metrics

We primarily employed classification accuracy and confusion matrices to evaluate the model's performance on domain
adaptation tasks. The primary indicator of the model's efficacy in transferring knowledge across domains was its
performance in classifying data within the unlabeled target domain. Confusion matrices offer a comprehensive
analysis of the transferability of each class, beyond only assessing overall correctness. This enabled the assessment of
the model's ability to generalize specific class-level attributes from the source domain to the target domain. This
facilitated our understanding of the model's advantages and disadvantages in adapting to new domains.[20]

RESULTS AND ANALYSIS

A. Accuracy Comparison

TABLE 4. Accuracy comparison for Source to Target transfer

DeepCORAL DAN DANN
AID - UCMerced 68.50% 69.17% 75.83
UCMerced - NWPU 77.76% 82.02% 78.69
PatcernNet — AID 72.26% 73.56% 72.83
PatternNet — UCMerced 91.83% 95.83% 92.5
NWPU - PatternNet 94.90% 95.73% 95.52
NWPU - AID 88.26% 90.14% 90.15

TABLE 5. Confusion matrix Source to Target transfer ( A-AID, U-UCMerced, N-NWPU, P-PatternNet )

DeepCORAL DAN DANN
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From Table 3 and 4 we can observe that as the FID score (as per table 3) decreases domain gap between datasets
reduces and hence we are finding higher accuracy in domain adaptation (as per table 4). Table 5 shows confusion

matrix for all domain adaptation cases which supports the accuracy scores of table 4.



B. Qualitative Insights

Our results highlight the importance of domain adaptation in remote sensing tasks that encounter significant cross-
sensor or cross-platform transitions. Among the methods that were looked at:
® DANN gets the best results when the domain shift is very strong since it has strong adversarial feature
alignment.
® DAN is more stable and consistent when there are only a few domain gaps.
® Deep CORAL is still appealing since it is simple and doesn't need a lot of computing power, which makes
it good for applications that don't have a lot of resources.
So, the level of projected domain discrepancy and resource availability should help you choose the right DA technique.

CONCLUSION

This thorough study shows how important domain adaptation (DA) is for remote sensing applications, where there are
often big domain gaps caused by sensors and platforms. Domain-Adversarial Neural Networks (DANN) exhibited
the most reliable performance enhancements in the presence of significant domain shift among the assessed
methodologies. On the other hand, the Deep Adaptation Network (DAN) showed more steady benefits in situations
where the domains were only slightly different. DeepCORAL also became a good choice because it worked well and
was easy to use with little extra processing power. These results indicate that the choice of a DA approach ought to
be guided by the extent of the domain gap and the computational resources at hand. Looking ahead, there are a number
of paths that need more research. These include using transformer-based architectures to better capture spectral-spatial
dependencies, using contrastive learning and self-supervised methods to reduce the need for labeled source data, and
extending to multi-source domain adaptation to make the system more robust in different sensor environments. Also,
adding sensor metadata, like geographic coordinates, to the model adaption process can make it more useful in the
real world and better fit with how remote sensing is used in the field.
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