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Abstract. Production scheduling is one of the most crucial aspects in manufacturing systems, enabling the on-time completion of jobs and maximizing resource utilization. This study addresses the Pure Flowshop Scheduling Problem (PFSP) to minimize total tardiness. A real case study from an Indonesian paint manufacturer is presented, in which the current scheduling rule—First Come First Served (FCFS)—frequently results in suboptimal performance. To counteract this, the Africa Vultures Optimization Algorithm (AVOA), a recent nature-inspired metaheuristic based on the foraging behavior of African vultures, is applied. The algorithm was evaluated with different population and iteration configurations. The results indicate that the AVOA is superior to the current company’s scheduling method, with the former resulting in a 37.2% reduction in total tardiness. This demonstrates the good performance of the algorithm and shows that the approach may be used as a practical tool for flowshop production scheduling.
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INTRODUCTION
Production scheduling plays a crucial role in efficient operations, determining the optimal sequence of jobs to be scheduled on existing machines. Among the scheduling types, the Pure Flowshop Scheduling Problem (PFSP) has been extensively investigated, mainly when all jobs are processed in the same order on all machines [1]. An important measure of performance in PFSP is total tardiness, which is the sum of the deviations of each job from its due date. High levels of tardiness can lead to low customer satisfaction and incur expensive penalties [2]. 
However, in practice, many companies still use the simple rule-based scheduling method (e.g., FCFS), as it may only guarantee the priority of jobs placed first, rather than the optimal sequence [3]. Such methods may result in higher makespan and total tardiness, which has led researchers to use metaheuristic algorithms for better scheduling solutions. Recent advances have introduced techniques such as whale swarm algorithm [4], hybrid shuffle frog leaping algorithm based on cuckoo search [5], and hybrid whale optimization algorithm (WOA) with local search heuristics [6], which have been developed to address makespan and energy consumption objectives. Additionally, hybrid and multi-objective methods have emerged to balance multiple production objectives  [7], [8].

LITERATURE REVIEW 

Table 1 presents flowshop scheduling studies from 2018 to 2022, focusing on the objectives of makespan, total tardiness, and energy consumption. Remarkably, few papers have total tardiness as their primary objective, such as  [9], which proposes several matheuristic algorithms, [10], which utilizes a Hybrid Discrete Water Wave Optimization Algorithm, or [11], [12], which employs an Iterated Greedy Algorithm. Other relevant approaches include Hybrid Discrete Harris Hawks Optimization [12] and Crossbreed Discrete Artificial Bee Colony [13].

The African Vultures Optimization Algorithm (AVOA) is a relatively new metaheuristic that simulates the cooperative and competitive foraging behavior of African vultures  [14]. It has demonstrated competitive performance for a wide range of problem applications, such as parameter fitting in SOFC models [15] and the design of heat exchangers [16]. Additionally, comparative analyses indicate that AVOA yields superior results to other algorithms (e.g., PSO, GWO, and WOA) in various optimization problems [14].

TABLE 1. Previous studies on flowshop scheduling
	Author & Year
	Objective Function
	Solution Approach
	Algorithm

	
	Make-span
	Tardi-ness
	Energi Consu-mption
	Noise polu-tion
	Flow time
	Adjus-ment time
	Earli-ness
	
	

	Ta et al. (2018) [9]
	-
	
	-
	-
	-
	-
	-
	Matheuristics
	Hybridization of a local search and an exact resolution method

	Lu et al. (2018) [7]
	
	-
	
	
	-
	-
	-
	Hybrid
	 Hybrid multi-objective grey wolf algorithm 

	Zhong et al.(2018) [5]
	
	-
	
	-
	-
	-
	-
	Hybrid
	Hybrid shuffle frog leaping algorithm based on cuckoo search

	Fu et al. (2019) [8]
	
	
	
	-
	-
	-
	-
	Metahe-uristics
	Multi-objective brain storm Optimization

	Wang et al. (2019) [4]
	
	-
	
	-
	-
	-
	-
	Metahe-uristics
	[bookmark: _Hlk137899779]Multi-objective whale swarm

	Ribas et al. (2019) [11]
	-
	
	-
	-
	-
	-
	-
	Metahe-uristics
	Iterated greedy

	Oztop et al. (2020) [17]
	-
	-
	
	-
	
	-
	-
	Metahe-uristics
	Multi-Objective Iterated Greedy

	Zhao et al. (2020) [10]
	-
	
	-
	-
	-
	-
	-
	Hybrid
	Hybrid Discrete Water Wave Optimization 

	Wang et al. (2020) [18]
	
	-
	
	-
	-
	-
	-
	Exact
	Epsilon-constraint algorithm integrated with L-shaped method

	Lu et al. (2021) [19]
	
	-
	
	-
	-
	-
	-
	Hybrid
	Hybridization of Iterated Greedy and an efficient local search

	Khare & Agrawal (2021) [12]
	-
	
	-
	-
	-
	-
	-
	Heuris-tics, Hybrid, and Metahe-uristics
	NEHedd, ESL, Hybrid discrete Harris Hawks Optimization (HHO) and Iterated Greedy (IG) Algorithm

	Li et al. (2021) [6]
	
	-
	
	-
	-
	-
	-
	Hybrid
	Hybridization of Whale optimization algorithm and local search 

	Mou et al. (2022) [20]
	-
	-
	
	-
	-
	
	-
	Hybrid
	Effective Hybrid Collaborative Algorithm

	Li et al. (2022) [21]
	-
	
	-
	-
	-
	-
	-
	Heuris-tics
	Iterated Greedy Algorithms

	Garside & Amallynda (2022) [13]
	-
	
	-
	-
	-
	-
	
	Metahe-uristics
	Crossbreed Discrete Artificial Bee Colony



Despite these advancements, to our knowledge, the AVOA has not yet been applied to PFSPs to minimize total tardiness. This study aims to fill this gap by adapting AVOA for solving a real-world case of pure flowshop scheduling in an Indonesian paint manufacturing company, which currently applies the FCFS rule. The main objective is to determine whether the AVOA can significantly reduce total tardiness and provide a practical alternative to the existing scheduling rule.

METHODS
This study addresses the problem of minimizing the total tardiness in a pure flowshop scheduling with the African Vultures Optimization Algorithm (AVOA). The following sections describe the AVOA algorithm, the job permutation LRV discretization method, and the modified AVOA version, which is customized for solving scheduling problems.

African Vultures Optimization Algorithm
[bookmark: _Hlk204091638]The African Vultures Optimization Algorithm (AVOA) is a nature-inspired metaheuristic introduced by [14], which emulates the cooperative and competitive searching behavior of African vultures. AVOA proceeds by splitting the population into two subpopulations, one governed by a dominant vulture chosen according to its fitness. The algorithm iteratively switches between exploration (global search) and exploitation (local search) based on the satiety level of the vultures. This satiety regulates the vulture's curiosity to discover new territories or return to rewarding ones.

Phase 1: Leader Selection
At the beginning of each iteration, the fitness of each vulture (solution candidate) is evaluated. The two top-scoring vultures are subsequently chosen as leaders (BestVulture1 and BestVulture2). Each individual references one of these leaders for guidance. The selection mechanism is governed by:

	
	(1)



Where L1 and L2 are leadership probabilities such as L1 + L2= 1. The selection is based on roulette wheel probabilities calculated as:

	pi = 
	(2)



Phase 2: Satiety Level and Transition Mechanism
The transition between exploration and exploitation phases is based on satiety indicator F, influenced by iteration count and random behavior. The intermediate variable t is first computed as:

	t = h. 
	(3)

	F = (2 .  + 1).   + t
	(4)



Where z [-1, 1], h [-1, 1], and rand1 [0, 1]. If , the algorithm performs exploration. Otherwise, it moves into the exploitation phase.

Phase 3: Exploration Phase
When , exploration is guided by two strategies chosen based on a probability P1:

	P (i+1) = 
	(5)

	P (i + 1) = R(i) – D(i). F
	(6)

	D(i) =     X = 2 × rand
	(7)

	P (i + 1) = R(i) – F +  . ((ub – lb) .  + lb)

	(8)


Where lb and ub are variable bounds.










Phase 4: Exploitation Phase
If   < 1, exploitation is divided into two sub-phases depending on whether  > 0.5 or  ≤ 0.5. The first sub-phase switches between two strategies based on:

	P (i + 1) = 
	(9)

	P (i + 1) = D(i) . (F + 	
	(10)

	d(t) = R(i) – P(i)
	(11)

	 = R(i) .  . cos (P(i))
 = R(i) .  . sin (P(i))
	(12)

	P (i + 1) = R(i) – ()
	(13)


If  ≤ 0.5, the second sub-phase is executed:

	P(i + 1) = 
	(14)

	

	(15)

	P (i + 1) = 
	(16)

	P (i + 1) = R(i) –  . F. LF(d)
	(17)

	LF (x) = 0.01 . , = 
	(18)



Where β = 1.5, and u, v  [0, 1] are random values.

Discretization using the Largest Rank Value
The AVOA continuous solution vectors are transformed into job permutations for scheduling using the Largest Rank Value (LRV) procedure. The components of a vulture's position vector are sorted in descending order after every generation. The job index corresponding to the highest value is scheduled first, followed by the second-highest value, and so on [22]. This ranking mechanism ensures that a valid permutation exists and guarantees its uniqueness.
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	[bookmark: Fig2]FIGURE 1. LRV Correct Job Permutation
	[bookmark: Fig3]FIGURE 2. LRV Incorrect Job Permutation



Fig. 1 illustrates an example of a correctly generated mapping job permutation using the LRV method. In contrast, Fig. 2 presents an inappropriate mapping job permutation that occurs when the values are not distinct or properly ranked. 









AVOA for Flowshop Scheduling
For minimization of total tardiness in the Pure Flowshop Scheduling Problem (PFSP), the AVOA approach is applied with LRV-based discretization. Every vulture has encoded into it a continuous vector, which is then converted into a job sequence through LRV. The total tardiness of the solution is used as a measure of fitness.

	1: Inputs: the population size N and maximum number of iterations T 
2: Outputs: The location of Vulture and its fitness value
3: Initialize the random population  (i = 1,2, …, N)
4: while (stopping condition is not met) do 
5: Apply LRV for changes best potition to job squences
6:   Total Tardiness values of Vulture
7:    Set , as the location of Vulture (First best location Best Vulture Category 1)
8:    Set , as the location of Vulture (Second best location Best Vulture Category 2)
9:   for (each Vulture ()) do
10:     Select R(i) using equation (1)
11:      Update the F using equation (4)
12:      if   1) then
13:          if ( ) then 
14:                  Update the location Vulture using equation (6)
15:           else
16:      Update the location Vulture using equation (8)
17:   if   1) then
18:       if  0.5) then
19:           if ( ) then
20:                Update the location Vulture using equation (10)
21:           else
22:                Update the location Vulture using equation (13)
23:       else
24:          if ( ) then
25:                Update the location Vulture using equation (16)
26:          else
27:                Update the location Vulture using equation (17)
Return 


[bookmark: Fig4]
FIGURE 3. Modification pseudo code African Vultures Optimization Algorithm

Fig. 3 presents the modified pseudocode of AVOA for scheduling purposes. In terms of satiety-based phase transition, the structure behaves in the same manner as the original algorithm, with the addition of a step for LRV transformation and tardiness calculation at each iteration. This adjustment makes the search dynamics of AVOA compatible with the discrete setting of job scheduling, strikes a good balance between global exploration and local exploitation, and maintains feasible solution permutations



RESULTS AND DISCUSSION

Scheduling Results Using AVOA
The African Vultures Optimisation Algorithm (AVOA) was implemented to enhance the production scheduling system on PT. X, an Indonesian paint company. The company employs the First Come First Served (FCFS) rule, which often results in suboptimal job sequences and high tardiness due to poor scheduling decisions. To adress this, the AVOA algorithm was implemented using different population sizes (100 and 200) and iterations (50, 100, 200, 500, and 1000).
The numerical experiments were implemented using MATLAB R2018a. The optimal values of the parameters were obtained by conducting experiments for each population and iteration. The results are reported in Table 2, which shows the job sequence and total tardiness for each AVOA configuration. The best solutions were obtained using a population of 100 and 1000 iterations, which produced a total tardiness of 546.9 minutes. This setup generated the optimal job sequence among all considered configurations.


TABLE 2. Best Result from AVOA Algorithm
	Population
	Iteration
	Job Sequence
	Total Tardiness (minutes)

	100
	50
	JO4-JO1-JO2-JO3-JO5-JO6-JO7-JO8-JO9-JO10-JO11-JO12-JO13-JO14-JO15-JO16-JO17-JO18-JO19-JO20-JO21-JO22-JO23-JO24-JS1-JS2-JS3-JS5-JS7-JS8-JS9-JO25-JO26-JO27-JO28-JO29-JO30-JO31-JO32-JO33-JO34-JO35-JO36-JS12-JS14-JS15-JS16-JS17-JS18-JS19-JS20-JS10-JS4-JS11-JS6-JS13
	585.9

	
	100
	J02-JO8-JO1-JO3-JO4-JO5-JO6-JO7-JO9-JO10-JO11-JO12-JO13-JO14-JO15-JO16-JO17-JO18-JO19-JO20-JO21-JO22-JO23-JO24-JS1-JS2-JS3-JS5-JS7-JS8-JS10-JO25-JO26-JO27-JO28-JO29-JO30-JO31-JO32-JO33-JO34-JO35-JO36-JS11-JS12-JS13-JS14-JS15-JS16-JS17-JS18-JS19-JS20-JS9-JS6-JS4
	571.9

	
	200
	JO10-JO7-JO22-JO1-JO2-JO3-JO4-JO5-JO6-JO8-JO9-JO11-JO12-JO13-JO14-JO15-JO16-JO17-JO18-JO19-JO20-JO21-JO23-JO24-JS3-JS4-JS5-JS6-JS7-JS9-JS10-JO25-JO26-JO27-JO28-JO29-JO30-JO31-JO32-JO33-JO34-JO35-JO36-JO37-JO38-JO39-JO40-JO41-JO42-JS18-JS19-JS20-JS1-JS17-JS8-JS2
	618.1

	
	500
	JO8-JO12-JO11-JO1-JO2-JO3-JO4-JO5-JO6-JO7-JO9-JO10-JO13-JO14-JO15-JO16-JO17-JO18-JO19-JO20-JO21-JO22-JO23-JO24-JS2-JS3-JS7-JS8-JS10-JO25-JO26-JO27-JO28-JO29-JO30-JO31-JO32-JO33-JO34-JO35-JO36-JO37-JO38-JO39-JS14-JS15-JS17-JS18-JS19-JS20-JS4-JS5-JS1-JS6-JS16-JS9
	597.1

	
	1000
	JO2-JO11-JO7-JO10-JO1-JO3-JO4-JO5-JO6-JO8-JO9-JO12-JO13-JO14-JO15-JO16-JO17-JO18-JO19-JO20-JO21-JO22-JO23-JO24-JS1-JS3-JS4-JS5-JS6-JS7-JS9-JS10-JO25-JO26-JO27-JO28-JO29-JO30-JO31-JO32-JO33-JO34-JO35-JO36-JS11-JS12-JS13-JS14-JS15-JS16-JS17-JS18-JS19-JS20-JS8-JS2
	546.9

	200
	50
	JO8-JO2-JO1-JO3-JO4-JO5-JO6-JO7-JO9-JO10-JO11-JO12-JO13-JO14-JO15-JO16-JO17-JO18-JO19-JO20-JO21-JO22-JO23-JO24-JS1-JS2-JS3-JS4-JS5-JS8-JS10-JO25-JO26-JO27-JO28-JO29-JO30-JO31-JO32-JO33-JO34-JO35-JO36-JS11-JS12-JS13-JS14-JS15-JS16-JS17-JS18-JS19-JS20-JS9-JS7-JS6
	571.9

	
	100
	JO16-JO11-JO6-JO3-JO1-JO2-JO4-JO5-JO7-JO8-JO9-JO10-JO12-JO13-JO14-JO15-JO17-JO18-JO19-JO20-JO21-JO22-JO23-JO24-JS1-JS2-JS3-JS4-JS6-JS7-JS9-JS10-JO25-JO26-JO27-JO28-JO29-JO30-JO31-JO32-JO33-JO34-JO35-JO36-JS11-JS12-JS13-JS14-JS15-JS17-JS18-JS19-JS20-JS8-JS16-JS5
	655.9

	
	200
	JO22-JO1-JO2-JO3-JO4-JO5-JO6-JO7-JO8-JO9-JO10-JO11-JO12-JO13-JO14-JO15-JO16-JO17-JO18-JO19-JO20-JO21-JO23-JO24-JS4-JS5-JS6-JS7-JS8-JS10-JO25-JO26-JO27-JO28-JO29-JO30-JO31-JO32-JO33-JO34-JO5-JO36-JS11-JS12-JS13-JS15-JS16-JS18-JS19-JS20-JS3-JS1-JS14-JS17-JS9-JS2
	657.8

	
	500
	JO10-JO11-JO1-JO2-JO3-JO4-JO5-JO6-JO7-JO8-JO9-JO12-JO13-JO14-JO15-JO16-JO17-JO18-JO19-JO20-JO21-JO22-JO23-JO24-JS1-JS2-JS3-JS4-JS5-JS6-JS7-JS8-JS9-JS10-JO25-JO26-JO27-JO28-JO29-JO30-JO31-JO32-JO33-JO34-JO35-JO36-JS11-JS12-JS13-JS14-JS15-JS16-JS17-JS18-JS19-JS20
	638.7

	
	1000
	JO2-JO4-JO3-JO6-JO1-JO5-JO7-JO8-JO9-JO10-JO11-JO12-JO13-JO14-JO15-JO16-JO17-JO18-JO19-JO20-JO21-JO22-JO23-JO24-JS3-JS5-JS6-JS7-JS8-JS9-JS10-JO25-JO26-JO27-JO28-JO29-JO30-JO31-JO32-JO33-JO34-JO35-JO36-JS12-JS13-JS14-JS15-JS16-JS17-JS18-JS19-JS20-JS2-JS1-JS4-JS11-JS17
	571.9



Scheduling Performance Comparison
To evaluate the performance of the AVOA, it is compared to the company's scheduling method (FCFS). Table 3 shows that the toal of tardiness using the FCFS is 871.3 minutes, but it is reduced to 546.9 minutes using the AVOA. This represents a decrease of 324.4 minutes (a 37.2% increase in scheduling efficiency). These results demonstrate that scheduling sequences has a significant impact on total tardiness. With the new schedule generated with AVOA, PT. X will experience more efficient operations and better delivery time performance. Consequently, the AVOA shows excellent potential for use as decision support in reducing tardiness in practical flow shop scheduling problems.










TABLE 3. Total Tardiness Comparison
	Method
	Job Sequence
	Total Tardiness

	FCFS (Company)
	JO1–JO2–JO3–JO4–JO5–JO6–JO7–JO8–JO9–JO10–JO11–JO12–JO13–JO14–JO15–JO16–JO17–JO18–JO19–JO20–JO21–JO22–JO23–JO24–JS1–JS2–JS3–JS4–JS5–JS6–JS7–JS8–JS9–JS10–JO25–JO26–JO27–JO28–JO29–JO30–JO31–JO32–JO33–JO34–JO35–JO36–JS11–JS12–JS13–JS14–JS15–JS16–JS17–JS18–JS19–JS20
	871.3

	African Vultures Optimization Algorithm
	JO2–JO11–JO7–JO10–JO1–JO3–JO4–JO5–JO6–JO8–JO9–JO12–JO13–JO14–JO15–JO16–JO17–JO18–JO19–JO20–JO21–JO22–JO23–JO24–JS1–JS3–JS4–JS5–JS6–JS7–JS9–JS10–JO25–JO26–JO27–JO28–JO29–JO30–JO31–JO32–JO33–JO34–JO35–JO36–JS11–JS12–JS13–JS14–JS15–JS16–JS17–JS18–JS19–JS20–JS8–JS2
	546.9

	Difference
	324.4

	Efficiency
	37.2%



CONCLUSIONS
This study proposed the application of the African Vultures Optimisation Algorithm (AVOA) for solving the PFSP to minimize total tardiness. A case study was conducted at a manufacturing company, PT. X, which employs a First Come, First Served (FCFS) policy in production scheduling. The experimental results showed that AVOA-based scheduling significantly outperformed the existing method. The best configurations-i.e., population of 100 and 1000 iterations-resulted in a total tardiness of 546.9 minutes as opposed to 871.3 minutes with the company’s FCFS-based schedule. It results in a 37.2% decrease in total tardiness, verifying the potential of AVOA as a useful decision-assisting tool in scheduling for flowshop problems. The proposed algorithm can also be extended to address multi-objective scheduling problems and a dynamic environment with stochastic job arrivals, as well as machine availability in future. Additionally, hybridizing AVOA with local search methods could further enhance solution quality and convergence speed.
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