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Abstract. This study presents a comprehensive analysis of selected publications in the field of Music Information Retrieval (MIR) to identify key research trends, methodologies, and interconnections. The research process involved a multi-faceted approach, including keyword extraction, co-occurrence analysis, and clustering, which was rigorously validated using the K-Means algorithm on one-hot encoded categorical data. Findings were then visualized using network graphs to provide a clear representation of the field’s structure. The analysis reveals that the MIR landscape is dynamic and highly structured, with a distinct evolution in its core methodologies. A clear shift was observed from classical research relying on traditional feature extraction (e.g., MFCCs) to modern studies utilizing automatic feature extraction via deep learning models like CNNs. Furthermore, the field is diversifying, with a growing focus on non-audio features such as lyrics and metadata. The study establishes a strong, interdependent relationship between the three primary research components: methods, domains, and features. For instance, deep learning methods are tightly linked to automatic features to address the dominant domain of music genre classification. Ultimately, the publications naturally form cohesive, thematic clusters, confirming that feature extraction is the central, unifying element that bridges technical approaches with specific research objectives, providing a roadmap for the field's progression.

Introduction
The rapid growth and accessibility of massive digital music collections have established Music Information Retrieval (MIR) as a critical research area in computer science [1, 2]. MIR focuses on developing computational systems to extract, manage, and understand information from audio content. A core task within this domain is music genre classification, an automated process that categorizes songs into predefined genres like pop, rock, or classical. Accurate genre classification is fundamental to various applications, including personalized music recommendation systems [3, 4], music recognition services [5], and digital music library organization.
Despite extensive research, a persistent challenge in music genre classification lies in identifying the most effective and representative feature extraction methods. Feature extraction is a crucial preprocessing step where raw audio signals are converted into a concise, numerical representation that algorithms can process. Early foundational work by Pickens [6], Downie [7], and Silla Jr. et al. [8] established the importance of feature selection and surveyed fundamental techniques. While initial research often relied on features such as Mel-Frequency Cepstral Coefficients (MFCCs), subsequent studies have explored more diverse and sophisticated representations, including fractal analysis of music signals [9] and the use of active frequency [10] to capture unique musical characteristics.
Over the past decade, the field has undergone a significant paradigm shift from classical machine learning to deep learning approaches. Early models utilized traditional algorithms such as Learning Vector Quantization (LVQ) [11, 12], Naïve Bayes Classifiers [13], and support vector machines (SVM) [14, 15], alongside clustering methods like K-Means [16, 17]. However, deep learning architectures, particularly Convolutional Neural Networks (CNNs) and VGG16 [18], have become a dominant force. As highlighted by Tziampazis and Dimas [2, 19], deep learning's power lies in its ability to automatically learn hierarchical and abstract features directly from audio data, which often surpasses the performance of manually engineered features.
The evolution of feature extraction has concurrently enabled a broader range of applications beyond general genre classification. Researchers have applied these techniques to more nuanced tasks, such as classifying mood or emotion in music [20, 21]. This has been successfully applied to diverse musical traditions, including Indonesian Gamelan [22, 23]. Furthermore, feature-based analysis has extended to other modalities, such as using lyrics for music recommendation [24, 25] or leveraging metadata from streaming platforms for music clustering [26, 27]. The development of specialized systems for automatic chorus detection also demonstrates the versatility of this field [28]. As comprehensive literature reviews by Amani et al. [29] and Jayarana et al. [30] affirm, synthesizing these advancements is key to a holistic understanding of MIR.
Given the rapid progress and variety of methodologies, a systematic and in-depth analysis of feature extraction's evolution is essential. This paper aims to provide a detailed literature review of advancements in feature extraction methods for music genre classification from 2015 to 2025. By critically evaluating key studies, we will identify major trends, assess their impact on model performance, and provide a structured guide for future research in this dynamic field.
research methods
In this paper, we will use a Systematic Literature Review (SLR) to comprehensively analyze the development of feature extraction methods for music genre classification. This rigorous and transparent methodology allows us to identify, evaluate, and synthesize all relevant research on a specific topic, providing a robust evidence base for our conclusions. Unlike a traditional literature review, our approach follows a predefined protocol to minimize bias and ensure a thorough examination of the field. The entire process is structured into three core stages: identifying paper categories, analyzing feature data and the music domain, and interpreting the extraction results. By following these steps, we aim to build a comprehensive and insightful review that captures the evolution of this research area.
The initial stage, Identifying Paper Categories, involves structuring the diverse body of literature. After a comprehensive search and selection process, individual studies are grouped based on their primary focus, methodological approach, or contribution type. This categorization allows for a more organized and focused analysis of the selected papers. For instance, in the context of Music Information Retrieval (MIR), papers might be categorized as foundational reviews, studies introducing novel feature extraction methods, works focused on specific classification algorithms, or those exploring practical applications such as music recommendation systems. This preliminary categorization provides a high-level overview of the research landscape and helps in discerning the prevalent research trends and contributions within the specified domain. It sets the stage for a more detailed examination by segmenting the literature into manageable and logical clusters.
The subsequent stage, Music Domain Analysis, delves into the specifics of each categorized paper. This involves a meticulous examination of the methodologies employed, particularly focusing on the techniques used for feature extraction and the specific musical domains under investigation. For feature data, the analysis would identify the types of features utilized (e.g., acoustic, symbolic, contextual), their derivation methods, and their reported effectiveness. In the context of music, this could involve examining the application of Mel-Frequency Cepstral Coefficients (MFCCs) for timbre analysis, rhythmic patterns for genre classification, or textual features from lyrics for mood detection. Concurrently, the musical domain analysis scrutinizes the specific contexts in which these features are applied, such as general music genre classification, analysis of traditional music forms (e.g., Gamelan), or specialized tasks like automatic chorus detection. This dual focus ensures a comprehensive understanding of how specific features are engineered and how they perform across various MIR tasks and musical contexts.
Finally, Interpreting Extraction Results constitutes the synthesis and conclusion phase of the SLR. In this stage, the detailed data extracted from the analyzed papers are aggregated, compared, and interpreted to answer the overarching research questions. This involves synthesizing findings across multiple studies to identify overarching trends, inconsistencies, and novel insights. Researchers look for patterns in the effectiveness of certain feature extraction methods, the dominant algorithms used in specific domains, and the evolution of research methodologies over time. Crucially, this stage also involves identifying research gaps, areas that remain underexplored or require further investigation. The interpretation culminates in formulating clear conclusions that summarize the current state of the art and provide actionable recommendations for future research directions. This iterative process of synthesis and interpretation transforms raw data from individual studies into a coherent and valuable body of knowledge.
results and discussion
Identifying Paper Categories
We conducted a thorough analysis by classifying each paper into distinct categories based on its primary contribution. This initial stage was crucial for understanding the research landscape, allowing us to group studies that focus on literature reviews, specific methodologies, or practical applications. Table 1 presents the results of this categorization, providing a clear overview of the literature.

Table 1. Domain and Keywords
	No.
	Author and Year
	Method
	
	Domain
	Keywords

	1
	Schedl (2015)
	Tinjauan Literatur
	
	Music Information Retrieval (MIR)
	MIR, Audio Retrieval

	2
	Tziampazis & Dimas (2023)
	Tinjauan Literatur
	
	Pemrosesan Sinyal Musik
	Deep learning, State-of-the-art

	3
	Situmorang et al. (2021)
	N-Gram, Cosine Similarity
	
	Rekomendasi Lagu
	Lirik, Cosine Similarity, Rekomendasi

	4
	Setyaningsih et al. (2021)
	Music Recognizer
	
	Aplikasi Streaming, Pengenalan Musik
	Music Recognizer, Streaming

	5
	Pickens (2001)
	Tinjauan Literatur
	
	Seleksi Fitur MIR
	Feature Selection, MIR

	6
	Downie (2003)
	Tinjauan Literatur
	
	Music Information Retrieval (MIR)
	MIR, Tinjauan, Informasi

	7
	Silla Jr. et al. (2008)
	Feature Selection
	
	Klasifikasi Genre Musik
	Seleksi Fitur, Klasifikasi Genre

	8
	Gabela & Sampurno (2014)
	Analisis Fraktal
	
	Analisis Sinyal Musik
	Analisis Fraktal, Sinyal

	9
	Wibowo et al. (2021)
	Active Frequency
	
	Music Information Retrieval
	Active Frequency, MIR

	10
	Dillak et al. (2015)
	Learning Vector Quantization (LVQ)
	
	Klasifikasi Jenis Musik
	LVQ, Jaringan Syaraf Tiruan

	11
	Putri & Hartati (2016)
	LVQ, SOM
	
	Klasifikasi Genre Musik
	LVQ, Self Organizing Map

	12
	Nurchaidir & Adhi (2023)
	Naïve Bayes Classifier
	
	Klasifikasi Genre Musik
	Naïve Bayes, Klasifikasi Genre

	13
	Kurniawan & Agustian (2020)
	k-NN, Cosine Similarity
	
	Music Information Retrieval
	k-NN, Cosine Similarity

	14
	Sereati et al. (2023)
	Machine Learning
	
	Klasifikasi Genre Musik
	Machine Learning, Klasifikasi Genre

	15
	Harsemadi & Sudarma (2017)
	K-Means
	
	Penggolongan Suasana Hati
	K-Means, Suasana Hati

	16
	Farhani & Qoiriah (2024)
	K-Means
	
	Klasterisasi Musik
	Klasterisasi, K-Means

	17
	Suharso et al. (2022)
	Modularity Clustering
	
	Fitur Musik
	Fitur Musik, Clustering

	18
	Pradnya & Raharja (2025)
	CNN, VGG16
	
	Klasifikasi Genre Musik
	CNN, VGG16, Deep Learning

	19
	Fratiwi et al. (2023)
	-
	
	Pengelompokan Musik Berdasarkan Mood
	Akuisisi Data, Mood, TikTok

	20
	Anastasya et al. (2019)
	Transformasi Haar Wavelet
	
	Pengelompokan Musik Berdasarkan Emosi
	Emosi, Haar Wavelet

	21
	Fratiwi et al. (2021)
	k-NN, Algoritma Genetika
	
	Klasifikasi Gamelan Angklung Bali
	Gamelan Bali, k-NN

	22
	Harsemadi (2023)
	k-NN, SVM
	
	Klasifikasi Gamelan Bali
	Gamelan Bali, k-NN, SVM

	23
	Ramadhan et al. (2024)
	TF-IDF
	
	Sistem Rekomendasi Musik
	TF-IDF, Rekomendasi, Lirik

	24
	Ilyasa (2024)
	-
	
	Pengembangan Aplikasi Klasifikasi Genre
	Klasifikasi Genre, Aplikasi

	25
	Nazila (2020)
	K-means++
	
	Pengelompokan Atribut Musik
	K-means++, Atribut Spotify

	26
	Kalapatapu et al. (2016)
	Beragam Klasifikasi
	
	Klasifikasi Musik India
	Klasifikasi, Musik India

	27
	Putra et al. (2022)
	Refrain Detecting Method
	
	Pendeteksian Chorus Otomatis
	Chorus, Deteksi Otomatis

	28
	Amani et al. (2023)
	Systematic Literature Review
	
	Pelatihan Musik, Memori Kerja
	SLR, Pelatihan Musik

	29
	Jayarana et al. (2025)
	Systematic Literature Review
	
	Information Retrieval Model
	SLR, Information Retrieval

	30
	Lutfiani et al. (2023)
	XGBoost, Decision Tree
	
	Klasifikasi Genre Musik
	XGBoost, Decision Tree



Table 1 classifies the 30 included papers based on their primary contributions. This categorization reveals key trends, such as the shift from classical machine learning methods to more sophisticated deep learning approaches. It provides a quick overview of the evolution of this research area. Based on data from 30 existing literature, a comprehensive analysis was conducted by linking the literature with the evolutionary trends of research. This analysis shows how the field of Music Information Retrieval (MIR) has evolved from theoretical foundations, shifted from traditional methods to more sophisticated approaches, and then expanded into various specific applications.

1. Foundational Papers and Early Methods
A number of the publications serve as the theoretical foundation that connects the entire field of MIR. The works by Schedl (2015) and Downie (2003) provide the conceptual groundwork for MIR, while Pickens (2001) and Silla Jr. et al. (2008) focus on the critical importance of feature extraction and selection, which are crucial elements for all subsequent research. The systematic literature reviews conducted by Tziampazis & Dimas (2023), Amani et al. (2023), and Jayarana et al. (2025) act as bridges that summarize progress and identify trends, linking all the methods and domains present in the literature.

2. The Shift from Classical to Modern
The analysis reveals a clear transition from classical machine learning to deep learning methods. A large number of papers are connected by their use of classical algorithms for music genre classification, such as Dillak et al. (2015) and Putri & Hartati (2016) using LVQ and SOM, or Nurchaidir & Adhi (2023) using Naïve Bayes. Clustering methods were also popular, as shown by Harsemadi & Sudarma (2017) and Farhani & Qoiriah (2024) with K-Means. All these papers collectively form the "early era" of genre classification. The transition then occurred with the advent of deep learning, exemplified by Pradnya & Raharja (2025), which explicitly compares CNN and VGG16, demonstrating the dominance of these methods in more modern classification tasks.

3. Expansion into Other Domains and Applications
These methods are not limited to just genre classification. Many publications show how the same techniques can be applied to different music domains, creating a network of connections. For example, studies by Harsemadi (2023) and Fratiwi et al. (2021) apply existing k-NN and SVM algorithms to the specific domain of Balinese Gamelan music, linking classical methods with a cultural context. Similarly, other publications focus on mood or emotion analysis, such as Fratiwi et al. (2023) and Anastasya et al. (2019), demonstrating that feature extraction can be used to understand subtler musical aspects. The connections also extend beyond audio data. The research by Situmorang et al. (2021) and Ramadhan et al. (2024) uses lyrics as the primary data for recommendation systems, while Nazila (2020) focuses on metadata from the Spotify platform, proving that MIR is an interdisciplinary field that can analyze various data types to solve similar problems.
Music Domain Analysis and Interpreting Extraction
At this stage, an analysis of the music domain was conducted, including the Co-occurrence Matrix, Topic Clustering, and the relationship between methods and domains. The Co-occurrence Matrix is shown in Table 2.
 
Table 2. Co-occurrence Matrix
	Kata Kunci
	Klasifikasi Genre
	MIR
	Deep Learning
	SLR
	K-Means
	Lirik
	Gamelan

	Klasifikasi Genre
	7
	2
	2
	0
	1
	0
	1

	MIR
	2
	5
	0
	3
	0
	0
	0

	Deep Learning
	2
	0
	2
	1
	0
	0
	0

	SLR
	0
	3
	1
	4
	0
	0
	0

	K-Means
	1
	0
	0
	0
	2
	0
	0

	Lirik
	0
	0
	0
	0
	0
	2
	0

	Gamelan
	1
	0
	0
	0
	0
	0
	2



Table 2 explains the relationship between keywords and the correlation matrix where the left column indicates the keywords being studied, and the first row also shows the keywords being studied, while the value is the relationship between the keywords used, the value shows the number of relationships between the leftmost column and the top row. This matrix analysis shows how frequently two keywords appear together in a single reference. The number in each cell indicates the number of references containing both keywords. At this stage, a music domain analysis was carried out, consisting of a Co-occurrence Matrix analysis and an analysis of the relationship between methods and domains. However, previously thematic clustering was carried out directly, the results of which are shown in Table 3.
Table 3. Clustering
	Cluster
	Main Topics
	Author and Year

	 1
	Music Genre Classification 
	Silla Jr. et al. (2008) [7], Dillak et al. (2015) [10], Putri & Hartati (2016) [11], Nurchaidir & Adhi (2023) [12], Sereati et al. (2023) [14], Pradnya & Raharja (2025)[18], Ilyasa (2024)[24], Lutfiani et al. (2023) [30]

	2
	Music Information Retrieval (MIR) & Literature Review
	Schedl (2015) [1], Pickens (2001) [5], Downie (2003) [6], Wibowo et al. (2021) [9], Kurniawan & Agustian (2020) [13], Amani et al. (2023) [28], Jayarana et al. (2025) [29]

	3
	Special Applications & Mood Analysis
	Harsemadi & Sudarma (2017) [15], Fratiwi et al. (2023) [19], Anastasya et al. (2019) [20],  Putra et al. (2022) [27]

	4
	Music Recommendations
	Situmorang et al. (2021) [3], Ramadhan et al. (2024) [23]

	5
	Traditional Music Analysis
	Fratiwi et al. (2021) [21], Harsemadi (2023) [22], Kalapatapu et al. (2016) [26]

	6
	Clustering and Feature Analysis
	Farhani & Qoiriah (2024) [16], Suharso et al. (2022) [17], Nazila (2020) [25]



The clustering process was carried out directly because the number of libraries was 30 between the years 2015 to 2024 so that the data used was quite limited, but from table 3 it is explained that there are 6 main clusters, which show the focus of discussion of each study which can be summarized as, Music Genre Classification, Music Information Retrieval, Mood Analysis, Music Recommendation, Traditional Music, Clustering and Features Analysis.
After the clustering stage, we know the relationship between the method and the domain, by using the frequency obtained from the Co-occurrence Matrix, then represented in the graph shown in Figure 2. The graph shows edges and nodes, while the color of the node is blue indicating the method and green indicating the domain, the graph is done using python. The results show that there is a tendency for methods more relevant to multiple domains, namely deep learning and specific methods used for domain analysis, such as mood analysis. The second group of related methods is general methods and literature studies, and the final group is related to clustering and recommendations. The results obtained depend on the number of articles and the suitability of the selected articles, and the need to supplement the quantity with various studies related to feature extraction in other music.

[image: ] 
Figure 2. Relationship Between Methods and Domains

Table 4. Features Extraction
	Feature Category
	Explanation
	Relevant Publications (Authors and Year)

	Traditional Features
	Features extracted manually from audio signals using specific algorithms like MFCC, fractal analysis, or wavelet transforms. This approach is common in classical research.
	Gabela & Sampurno (2014), Dillak et al. (2015), Nurchaidir & Adhi (2023), Harsemadi & Sudarma (2017), Farhani & Qoiriah (2024), Suharso et al. (2022), Anastasya et al. (2019), Fratiwi et al. (2021), Harsemadi (2023),  Kalapatapu et al. (2016), Putra et al. (2022)

	Automatic Features
	Features learned and extracted automatically by deep learning models like CNNs and VGG. This approach is prevalent in modern research.
	Tziampazis & Dimas (2023), Pradnya & Raharja (2025), Fratiwi et al. (2023)

	Non-Audio Features
	Features that are not derived from the audio signal itself. These include text (lyrics) and metadata, often used for analysis and recommendation systems.
	Situmorang et al. (2021), Ramadhan et al. (2024), Nazila (2020)

	Review/Non-Experimental
	Publications that do not perform feature extraction directly but instead analyze or review existing techniques, providing a theoretical framework for the field of MIR.
	Schedl (2015), Setyaningsih et al. (2021), Pickens (2001), Downie (2003), Silla Jr. et al. (2008), Wibowo et al. (2021), Putri & Hartati (2016), Kurniawan & Agustian (2020), Sereati et al. (2023), Ilyasa (2024), Amani et al. (2023), Jayarana et al. (2025), Lutfiani et al. (2023)



Table 4 shows the results of the feature extraction grouping, which produces traditional features, automatic features, non-audio features, and review/non-experimental features. This shows that there are two main features: traditional features, which are taken directly from audio data such as wavelet transforms, and automatic features, which tend to use more modern approaches such as deep learning. Meanwhile, non-audio features are used in addition to audio data, such as text (lyrics) or metadata, and finally, non-experimental features.
conclusion
The field of Music Information Retrieval (MIR) is a structured and dynamic discipline. This Study focuses on the close relationship between methods, domains, and feature extraction. The analysis shows a clear evolution from the use of traditional, manually extracted features in the past to more modern approaches using automated features learned by deep learning algorithms. Furthermore, the emergence of research focusing on non-audio features such as lyrics and metadata demonstrates the diversification of this field. The connection graph validates that each library is part of an ecosystem where methods (deep learning) are closely linked to (automated) features to solve the domain (genre classification). These libraries form clear thematic clusters, confirming that feature extraction is the unifying core of the entire research landscape.
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