Investigation of the Kinematic Parameters of Steering Trapezoid Mechanism of Trucks
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Abstract. The paper represents the results of theoretical and experimental studies on determining the influence of steering trapezoid mechanism parameters on the steering angle relationship of the DAF XF95 truck. This makes it possible to obtain accurate results of theoretical studies of the vehicle’s motion along a curvilinear trajectory, using a limited set of steering system input parameters obtained through measurements. A spatial computational model was employed for theoretical investigations, while two HRS100 sensors were used for experimental studies. The maximum relative error of the steering knuckle angles at the extreme positions of the steering system, obtained experimentally and theoretically, did not exceed 3.5%, which confirms the applicability of the proposed methodology for modeling vehicle motion along a curvilinear trajectory and highlights the potential for further research in this area.
Keywords: truck; steering trapezoid mechanism; optimal parameters; steered wheels; steering angle relationship; theoretical analysis; experimental investigation.
INTRODUCTION
The accuracy of steering linkage geometry directly affects vehicle maneuverability, driving stability, and tire wear intensity, especially in multi-axle trucks. Recent studies consider the synthesis of the steering trapezoid mechanism as a multi-criteria optimization problem, considering Ackermann error, wheel alignment angles, turning radius, and sometimes even strength and weight limitations of the steering system components [1-2]. At the same time, geometric models are increasingly combined with multi-body dynamics (MBD) to simultaneously account for the suspension kinematics and the dynamics of the entire vehicle, rather than considering the steering system elements separately [2].
Currently, evolutionary and swarm algorithms (PSO and their modifications) as well as robust RBDO schemes dominate in solving optimization problems. These approaches make it possible to minimize control errors over the entire range of wheel steering angles without requiring precise initial approximations [3-4]. For passenger cars, this provides a noticeable improvement in compliance with the Ackermann condition, while for trucks it reduces the turning radius with an acceptable compromise between accuracy and technological feasibility [8-9].
Additionally, an engineering approach to optimization is being developed: “bump-steer” and “brake-steer” optimization represent experimentally oriented methods, as well as parametric optimization of the steering trapezoid itself under strict dimensional constraints [5-6, 15]. Such studies reduce the gap between theory and testing, demonstrating how simple experimental studies and properly selected factors can significantly reduce steering angle errors and improve steering predictability [6, 15].
The sensitivity to peripheral parameters has been effectively demonstrated in studies that incorporate kingpin inclination, tire slip angle, and dynamic effects into the problem formulation. These factors shift the optimum of the theoretical steering trapezoid and account for the observed deviations from the ideal Ackermann condition [7].
A notable trend is the transition from the classical four-link scheme of the trapezoid to six-link and hybrid configurations in order to improve the accuracy of reproducing the Ackermann condition over a wide range of steering angles [9-10, 14]. This is particularly relevant for multi-axle trucks, where coordinated steering of multiple axles requires the synchronous optimization of two or more steering trapezoid mechanisms [8-9].
Ukrainian studies are also moving from planar models toward applied optimization. Using the example of the multi-axle KrAZ-7634 truck, it has been shown that even simplified algorithms are useful for the rapid selection of baseline point coordinates and for reducing the discrepancy between theoretical and actual steering angles [11]. In the agricultural sector, the application of TLBO modifications has provided experimentally validated improvements in the steering trapezoid parameters of the John Deere T600 tractor, demonstrating the effectiveness of the proposed methodology under real-world conditions [13].
Thus, the modern approach to steering system modeling lies in combining precise modeling with multi-criteria optimization, while incorporating a full-vehicle simulation model [1-2, 7-9, 11, 15, 17]. This is primarily due to the complexity of obtaining the coordinates of the key points of a real vehicle’s steering system, which are in three-dimensional space. In addition, accounting for the interdependence of the kinematic parameters of the steering system on the angular positions of the steering mechanism, steering knuckles, and kingpin is experimentally challenging. Moreover, experimental validation is performed less frequently for trucks than for passenger cars, and for multi-axle vehicles there is still a lack of unified comparative criteria between the classical trapezoid and its six-link alternatives [1-2, 8-10, 14-15]. In this paper, we present an attempt at spatial modeling of a truck steering system combined with experimental investigation of the kinematic parameters of the steering trapezoid mechanism.
theoretical METHODOLOGY
Currently, both the mechanical design and the investigation of the kinematic and dynamic parameters of vehicle steering systems employ planar or quasi-spatial models of the steering trapezoid mechanism, along with analytical, graphical, or graph-analytical research methods. During the process of refining layout and design solutions for a vehicle’s steering system, the coordinates of the key points on real vehicles are determined with consideration of minimizing the discrepancy between the theoretically required and the actual steering angles of the steerable wheels. In other words, for studying the kinematic parameters of the steering system or the kinematic characteristics of vehicle motion along a curvilinear trajectory, it is sufficient to empirically obtain the coordinates of the key points of the vehicle’s steering axle and, using the proposed methodology, determine the rational parameters of the steering system. The process of finding these rational parameters consists in achieving a compromise between the turning kinematics of the truck and the kinematic capabilities of the steering system’s linkage mechanism.
[bookmark: _GoBack]If the design parameters that determine the accuracy and symmetry of the steering system kinematics are defined, optimization can be applied to obtain such values that, during successive turning of the right and left wheels, the pitman arm rotates symmetrically with respect to the neutral position. To illustrate the optimization process of the steering trapezoid mechanism, the calculation scheme is presented in Fig. 1.
Given the similarity of geometric figures, it is convenient to introduce relative parameters normalized to the unit value of the kingpin distance.
If L is the wheelbase of the vehicle, then:

 – the kingpin distance, where b is the ratio of the kingpin distance to the vehicle wheelbase;


– the length of the pitman arm, where m1 - is the ratio of the pitman arm length  to the kingpin distance;

 – the initial installation angle of the pitman arm in the plane of the local coordinate system;

– the initial installation angle of the pitman arm in the vertical plane of the local coordinate system;


 – the length of the longitudinal tie-rod lever, where m3 is the ratio of the longitudinal tie-rod lever length  to the kingpin distance;

 – the initial installation angle of the longitudinal tie-rod lever in the vertical plane of the local coordinate system;
[image: St4axes3]
FIGURE 1. Spatial linkage system of the steering mechanism of a truck.


 – the initial installation angle of the longitudinal tie-rod lever in the plane of the local coordinate system;


 – the longitudinal distance between the centers of the local coordinate systems of the pitman arm and the longitudinal tie-rod, where  is the relative longitudinal distance between these centers;


 – the lateral distance between the centers of the local coordinate systems of the pitman arm and the longitudinal tie-rod, where  is the relative lateral distance between the centers of the local coordinate systems of the pitman arm and the longitudinal tie-rod;


 – the vertical distance between the centers of the local coordinate systems of the pitman arm and the longitudinal tie-rod, where  is the relative vertical distance between the centers of the local coordinate systems of the pitman arm and the longitudinal tie-rod;
ξ – kingpin inclination angle;
μ – caster angle (longitudinal kingpin inclination).

Thus, if the parameter vector is , the optimization parameter vector is formed as:


		(1)





Considering the spatial motion of levers, they are treated in local Cartesian coordinates, while the motion parameters () are expressed in main spherical coordinates. Then  are the components of the spherical coordinates of the -th lever, and  is the direction cosine matrix of the -th lever for transformation into the global coordinate system.
The distance vector between the centers of the local coordinate systems of the pitman arm and the longitudinal tie-rod:


		(2)

Determination of the longitudinal tie-rod length in the global coordinate system:


		(3)

Transformation into the local coordinate system of the longitudinal tie-rod:


		(4)

		(5)

		(6)

		(7)

All other parameters are defined or prescribed.







If the relationship between the displacements of the trapezoid levers is determined, the dependence  can be expressed, i.e., the steering shaft rotation angle  is a function of the inner wheel steering angle. Either of the steered wheels can be the inner one; therefore, the function  splits into two cases:  – pitman arm rotation when the left wheel turns left, and  – pitman arm rotation when the right wheel turns right. The meaning is that these functions must be symmetric, or the difference between their magnitudes should be minimal. Each function ,  is multiparametric with parameters (1), that define the uniqueness of the design. Then:


	;	(8)


		(9)



We form a new function based on , , which reflects their difference:


		(10)




Depending on the current parameter values  at each calculation point () a function  is formed, depending only on the steering system design parameters. The number of these functions depends on the discretization step of the full inner wheel steering angle:


		(11)


We form the objective function by squaring :


		(12)


The optimal parameters provide the minimum norm of the vector-function : 


		(13)
Or

		(14)

Thus, the functional takes the form:


		(15)

The system of equations for determining the optimal parameters has the form:


		(16)

The solution is obtained numerically in the MATLAB technical computing environment using one of the descent methods – the conjugate gradient method and the modified Newton method.
Experimental methodology
Experimental studies of the kinematic parameters of the steering system were carried out for the DAF XF-95/430 truck. The experimental program included the determination of the following parameters:
- obtaining the dependence between the rotation angles of the pitman arm and the left steering knuckle during continuous steering wheel rotation;
- obtaining the dependence between the rotation angles of the pitman arm and the right steering knuckle during continuous steering wheel rotation.
For this purpose, sensors were attached to the corresponding points of the steering system using special fixtures: HRS1 sensor – to the left longitudinal frame unit of the vehicle (Fig. 2 a), utilizing technological openings, with the driving gear sector fixed to the nut of the pitman arm mounting; HRS2 sensor – to the front axle beam (Fig. 2 b), with the driving gear sector fixed to the kingpin bearing cap of the left steering knuckle. Prior to installation, the sensors were calibrated using dedicated fixtures and software.

	        [image: рис 3_8_а-min]
	[image: рис 3_8_б-min]

	                                                (a)
	                                 (b)


FIGURE 2. Mounting locations of the HRS-100 sensors on the vehicle components: 
(a) for determining the rotation angles of the pitman arm; (b) for determining the rotation angles of the steering knuckle.
Experimental data and results
The experimental results are shown in Fig. 3.
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	(a)
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FIGURE 3. Experimental results: (a) for the left steering knuckle; (b) for the right steering knuckle.

Figure 4 presents the comparative dependencies of the rotation angles of the left steering knuckle (Fig. 4 a) and the right steering knuckle (Fig. 4 b) on the rotation angles of the pitman arm.
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	(a)
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FIGURE 4. Comparison of the steering angle ratios of the wheels determined theoretically and experimentally: (a) for the left steering knuckle; (b) for the right steering knuckle.
Analysis of research results
The obtained results demonstrate the feasibility of using the proposed methodology for determining the rational parameters of the steering trapezoid mechanism, employing a spatial computational model under the assumption of ideal components of the steering system. The maximum relative error of the steering knuckle rotation angles at the extreme positions of the steering system, obtained experimentally and theoretically, did not exceed 3.5%, which confirms the adequacy of the proposed methodology.
CONCLUSION
The study has proposed and a methodology for determining the rational parameters of a truck steering system based on a spatial computational model. This approach allows for a more accurate and efficient investigation of the steering trapezoid mechanism’s kinematics compared to traditional planar models. By introducing a vector-based optimization framework and applying the conjugate gradient and modified Newton methods in MATLAB, the study achieved a high level of precision in replicating the experimental steering behaviour of the DAF XF95 truck. The methodology enables the accurate assessment of steering linkage geometry, including the spatial interaction between the pitman arm, tie rods, and steering knuckles, thereby reflecting the real operating conditions of heavy-duty vehicles.
The experimental validation confirmed the adequacy of the developed model. The maximum relative deviation between theoretical and experimental results did not exceed 3.5%, which verifies the correctness of the spatial geometric relationships embedded in the proposed computational approach. This high level of accuracy indicates that the simplifications applied in the model, such as assuming ideal stiffness of steering elements and neglecting elastic deformations, are acceptable for engineering analysis and design optimization purposes.
In future developments, it is also advisable to account for the technical condition of steering components, including wear of the tie-rod joints and elasticity of the pitman arm assembly. These factors can influence the steering response symmetry and accuracy and should be investigated.
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