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Abstract. The paper studies the motion modes of mechanical systems of the “engine-drive” type used in tracked vehicles during their start-up. It presents a physically justified, direct variational method developed by the authors, on the basis of which the motion modes of the above-mentioned mechanical systems are optimized using kinematic and dynamic criteria represented by integral functionals. The use of the spline function method over time has made it possible to develop recommendations for the selection of criteria and terminal (initial-boundary) conditions of motion that ensure optimal modes of operation of the “engine-drive” system of tracked vehicles during their start-up and, in particular, minimizes the value of the root mean square effective starting torque and its derivative with respect to time. It is this approach that ensures, in turn, the optimality of the motion mode of the considered mechanical systems with the desired properties. The use of direct variational methods and physically justified terminal conditions allows the Cauchy problem to be reduced to the Euler-Poisson equation, which can be solved using standard methods of mathematical physics. 
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Introduction
Performing calculations related to resonance, determining dynamic loads, and solving other engineering problems usually requires knowledge of the law governing changes in the rotational speed of a machine's motor shaft during transitional modes. This also applies to the mechanical “motor-drive” systems of tracked vehicles. In addition, to determine the maximum amplitude of the machine's engine shaft vibrations, it is necessary to know the angular acceleration at the moment when the frequencies of the enforced force and the natural vibrations of the engine-drive system of the tracked machine coincide, since the maximum amplitude of the vibrations significantly depends on the angular acceleration at this very moment. The law of change in speed away from resonance has a relatively weak effect on the result. When determining the angular acceleration corresponding to resonance, it is usually assumed that the reverse effect of the oscillatory system on the engine is weak (and therefore can be neglected) and that the torque characteristic of the engine does not depend on the angular acceleration, i.e., it is static.
It is well known that increasing the productivity and reliability of mechanical systems and reducing their energy consumption is one of the main strategic directions for improving the efficiency of production processes. The productivity and reliability of mechanical systems are significantly affected by dynamic loads that arise in these systems during movement. The selection of motion modes for mechanical systems that minimize dynamic loads is only possible using the theory of optimal motion control in the presence of generalized dynamic criteria [1, 4, 5, 7]. The purposeful selection of motion modes and mode parameters allows minimizing dynamic loads, as well as reducing energy consumption and using the drive mechanism with the lowest power [1-10]. 
Optimization of motion modes and mode parameters requires quantitative assessment of transient processes (starting, braking, reversing, etc.) of steady-state motion over the entire cycle of motion of a mechanical system in the form of a single criterion (or system of criteria). In this case, it is appropriate to use local and integral dynamic and energy criteria obtained on the basis of the action functional and variational principles of classical mechanics. These criteria reflect undesirable properties (energy consumption, dynamic load effects, link vibrations, etc.) that characterize a dynamic system during motion and therefore need to be minimized. Integral functionals (criteria) depend on various functions and parameters of motion modes. The appropriate selection of these dependencies and parameters allows minimizing functionals and improving certain properties of a mechanical system.
Minimizing functionals is related to solving the variational problem of the dynamics of a mechanical system motion. The mathematical solution of this problem reduces to a boundary value problem, which, in general, is determined by a system of nonlinear Euler-Poisson differential equations, equations of motion, and boundary conditions (terminal conditions) of the motion of a mechanical system. In some special cases, an analytical solution to such a problem can be obtained, but for most practical problems it is necessary to use numerical methods. The complexity of the numerical solution of a boundary value problem lies in the fact that the initial conditions necessary to start the integration process are not always given; only the corresponding boundary conditions at different ends are known. Numerical integration is a rather complex task because, by arbitrarily setting the initial conditions, we have to look at how the known conditions at the other end are satisfied. Despite the significant advances and capabilities of computer technologies, solving boundary value problems using numerical methods takes a considerable amount of time, since it is difficult to establish a direct relationship between the variable initial conditions and the final uncertainties in the solution obtained at the other end.
It should also be noted that researchers often formulate incorrect, physically unjustified initial conditions [1, 4, 5-7] that do not satisfy the laws of classical mechanics (Newton's first and second laws, in particular, since they lack the causes of the system's motion that led to this motion or caused motion at a constant speed in the absence of a resultant force acting in the system). This work is proposed precisely to eliminate these existing shortcomings. A partially similar approach is implemented in [8-13]. 
The aim of the study is to substantiate the method of analyzing the optimal operating modes of the “engine-drive” systems of tracked vehicles during their start-up, which are based on determining the motion parameters of such systems by direct variational methods, conditioned by correctly (in physical terms) specified terminal conditions (in other words, initial boundary conditions), and also allow minimizing the root mean square value of the effective torque acting on the machine's engine shaft or its derivative in time (i.e., the rate of change of the specified torque during the start-up period). 
Ignoring the difficult fluctuations in the “engine-drive” system of a tracked vehicle, let us construct a differential equation of rotational motion:


		(1)









where:  is rotor rotation angle; is stationary torque characteristic of the motor;  is torque of resistance forces;  is torque of rotating parts reduced to the motor shaft, is time,  is angular frequency of rotation,  is angular acceleration. If we introduce the designation: where is the effective torque of the motor shaft of a tracked vehicle, then (1) can be presented in the following form:


		(2)




А. Let us determine what the law and  should be so that the motion of this mechanical system satisfies the following criterion of quality of this motion during the transition period (start-up), lasting 


		(3)

Using the entry (2), the quality criterion for the movement of the mechanical system “engine – drive” of a tracked vehicle (3) can be presented as follows:


		(4)

A necessary condition for the realization of the motion quality criterion of a mechanical system (3) or (4) is the Euler–Poisson equation:


		(5)

We can find the solution (5) using spline functions over time of the form:


		(6)


Then, for from (6) we have:


		(7)







For  with  we assume that:  where is the initial phase of the rotational movement of the engine shaft of a tracked vehicle. Then  All other constants  are determined from the following terminal conditions for the engine shaft rotation frequency:


		(8)


where:  is nominal rotational speed of the tracked vehicle's engine shaft immediately after the end of the transition mode (i.e., after starting the vehicle). Then conditions (8) allow us to determine the following constants from (7):


		(9)


Thus, for we have:


		(10)


And for :


		(11)



Therefore, when the phase of the motor shaft rotation changes over time  (10) and when the angular frequency of its rotation changes over time  (11), the motion quality criterion for the given mechanical system “motor-drive” of a tracked vehicle (3) or (4) is fulfilled. 



Let resonance in the mechanical system “engine – drive” occur at the frequency of rotation of the engine shaft  This frequency coincides (at the moment of resonance) with the frequency of the forced external force that causes this shaft to rotate. According to the law of change in rotational frequency over time  (11), the moment , at which the resonance situation occurs is determined by the ratio:


		(12)




If  then resonance in this mechanical system is observed during the transition process (start-up), and if - then resonance phenomena occur in the “engine-drive” system later, at 

Let us consider the situation where  and, in addition, the following relationship holds:


		(13)

As a physical and mechanical model of the functioning of the “engine-drive” system of a tracked vehicle, we choose the following, which is commonly used in the study of non-stationary processes in linear mechanical systems with one degree of freedom of motion, assuming that the energy source has sufficient power:


		(14)








where:  can be considered as linear displacement (or as the instantaneous angle of rotation of the machine's motor shaft), is a coefficient that characterizes damping; is the frequency of free oscillations; is the amplitude of the enforced force relative to the mass unit of the system (or the effective enforced force that causes the engine shaft to rotate and is defined as the quotient of  divided by the lever arm () of the rotational force). In this case, the frequency of the external force і is a function of time (similar to (11)). In the case considered below:


		(15)



So,  can be interpreted as the rate of change of frequency 



From the following, it can be seen that  can change as quickly as possible compared to the “natural unit of time” (period of natural oscillations ) of the linear system under consideration. In the case of a nonlinear system, we will consider the frequency  to be a slowly time varying quantity in the above sense.


Let us integrate equation (14). First, instead of , let us introduce a complex variable that:


		(16)

and satisfies the differential equation:


		(17)


Using the method of variation of arbitrary constants with zero initial conditions  з (17) we have:


		(18)


where: 



Integral (18) cannot be expressed in closed form using the simplest (elementary) functions, and its numerical determination encounters certain difficulties, since the integrand is a rapidly oscillating function. We describe below the solution of the problem in analytical form, which is expressed in terms of the integral of probabilities from the complex argument, for which fairly detailed tables are available [14]. The use of the tabulated function  to calculate the integral (18) significantly reduces the complexity of calculations compared to numerical integration or the use of convergent and asymptotic series.
Therefore, the solution (18) has the following form:


		(19)



From (19) it follows that  represents the amplitude of forced oscillations occurring at a frequency that varies over time. In other words,  є is the envelope of the oscillatory process.

Let's consider several cases of dependency 



1. Let  not depend on  Then the introduction of the function - the integral of probabilities from a complex argument [15]:


		(20)


gives the following expression for  in (19):


		(21)


The last two terms in parentheses in expression (21), multiplied by  represent the damped free vibrations of the elastic “engine-drive” system of a tracked vehicle, which are caused at the initial moment of time by the application of an external load to the engine shaft.


Indeed, performing the above multiplication and substituting the variables  and  according to formulas (19), after some simple transformations we find:


		(22)





where:  are constants, since they are determined by independent of  quantities  and  With rapid damping of free oscillations, the latter can be neglected, thereby simplifying the expression for the amplitude of non-stationary oscillations:


		(23)

For convenience of calculation and analysis of results, let us introduce the following designations:


 static deviation in the engine-drive system of a tracked vehicle ;




 dynamic coefficient for non-stationary forced vibrations with time-varying frequency;  dynamic coefficient and amplitude of oscillations at steady resonance;
 dimensionless parameter. Then, in accordance with (21), the expression for the amplitude of non-stationary oscillations of a system with one degree of motion freedom when passing through resonance will have the form ():


		(24)

Let us introduce one more dimensionless parameter:


		(25)

which we will define as the relative dynamic coefficient for non-stationary oscillations. 

From (24) and (25) we have ( ):


		(26)

2. It is of practical interest to consider a case where the amplitude of the forced force during motor shaft rotation depends on time, for example, under the action of a centrifugal force from an unbalanced mass. Let us consider this important case.
If we ignore the tangential component of the inertial force of an unbalanced mass in rotation, then the amplitude of the enforced force can be expressed by the following expression:


		(27)


where: is proportionality coefficient. 
It is easy to see that:



	 at 	(28)



i.e.,  is the static deviation of the mechanical system “engine – drive” of a tracked vehicle from the equilibrium position under the action of a force  corresponding to resonance.
Using (19), we can find:


		(29)

accordingly:


		(30)

Substituting (30) into (19), we obtain:


		(31)

or, after integrating in parts,


		(32)

Since:


		(33)


then, using the integral of probabilities from the complex argument  and (33), (32) can be reduced to the following form:


		(34)


Hence, the dynamic coefficient for non-stationary oscillations ():


		(35)


The last two terms in (35), multiplied by  represent the damped free oscillations of this mechanical system.



If we ignore the latter, then for sufficiently small ratios  and  we can show that the oscillations in the vicinity of resonance are close to those that would be caused by a coercive force with a constant amplitude  
Taking into account (19), from (34) we have:


		(36)




B. Let us determine what the law and , should be so that the motion of this mechanical system satisfies the following criterion of quality of this motion during the transition period (start-up), lasting 


		(37)

Using equation (2), the criterion for the quality of movement of the mechanical system “engine-drive” of a tracked vehicle (37) can be presented as follows:


		(38)

A necessary condition for the realization of the quality criterion of the mechanical system (37) or (38) is the Euler–Poisson equation:


		(39)

We find the solution (5) using spline functions over time of the form:


		(40)



Then for from  we have:


		(41)






For  at  we accept that: where  is the initial phase of rotational movement of the engine shaft of a tracked vehicle. All constants  are determined from the following terminal conditions for the engine shaft rotation frequency:


		(42)


Then, for the coefficients  from (40) and (42) we have:


		(43)




Under condition (13) for  and we have ):


		(44)

That is, in the situation considered in section B, all the relationships obtained in section A are repeated.


Using relation (12), we can find the value  when condition (13) is satisfied. In this case, an indeterminate form of type 0/0 arises. To solve this, we can use L'Hôpital's rule (to find the limit of a function). Let us introduce the designation:  Then expression (13) can be written as follows:




	 at  is 	(45)

In order for resonance in the “engine-drive” system of a tracked vehicle to be observed during start-up (condition (13) is satisfied), the following is necessary:


		(46)

It should be noted that such controlled movements of the engine shaft of a tracked vehicle during start-up are possible when using modern mechatronic systems and control complexes.

To determine the speed of passage through the resonance of the mechanical system “engine-drive” of a tracked vehicle, the torque characteristics of a specific engine type should be taken into account. Below are the main results for systems with a short-circuited induction motor and for DC electric motors (with independent excitation (and parallel excitation), as well as with series excitation). In addition, an algorithm has been defined for each of the above-mentioned motor types to determine the duration of the starting process (), which takes into account the moments of resistance forces from the load.
А. Systems with short-circuited induction motor.
The torque on the motor shaft is determined by the Closs formula:


		(47)

where: 


 









 are maximum and nominal engine torques; is the multiplicity of maximum torque; and  are engine power in kW and rated speed in revolutions per minute (); is synchronous engine revolutions per minute, determined as the nearest higher value (the quotient of dividing 3,000 by an integer); is slip at nominal mode;  is critical slip – slip at which maximum torque is achieved.

When starting the engine at idle speed, the resistance forces are caused by friction in the bearings and other parts, as well as losses due to ventilation, etc. The total torque of these forces in operating mode is about 10% of the nominal torque of the engine. Therefore, when considering the start of the machine without load, it is acceptable to assume 
For machines with centrifugal pumps, fans, and machines with high losses in reducers during start-up under load, a linear relationship is recommended:


		(48)

The load from vibrating screens and other vibration equipment is accepted as proportional to the square of the angular velocity:


		(49)



Substituting expressions for and  into the equation:


		(50)


we can obtain the calculation formulas for determining the speed of passage through resonance ():
1) when starting the engine without load – 


		(51)

2) with linear load characteristics – 


		(52)

3) with quadratic load characteristics –


		(53)


To calculate the parameter  ((start-up duration), it is necessary to use relations (51) – (53) and the method of integrating fractional rational polynomials by decomposing subintegral expressions into simple (elementary) fractions:


		(54)

B. Systems with DC electric motors.
To obtain the torque characteristics of DC electric motors, differential equations of electromotive force in the electrical circuit should first be compiled under the following assumptions: a) the motor does not operate in the saturation area; b) there is no hysteresis of the magnetic circuit; c) the armature resistance is constant; d) the mutual inductance of the windings and the armature reaction are small; e) the motor is considered a linear element in which the magnetic flux is created by the excitation winding.
The differential equations describing a DC electric motor, under the above assumptions, are as follows:


		(55)


		(56)


		(57)










Here  and are the inductances and electrical resistances of the armature circuit and excitation winding, respectively (H and Ohm);  and  are voltages applied to the armature windings and excitation (В); are electromotive force and armature current (В and А); is excitation winding current (А); is magnetic flux of one pole (Wb); is the number of armature revolutions (per minute);  is the engine torque (N·m).


The constants and are determined by the following formulas:


		(58)




where:  is the number of pairs of main poles; is number of conductors on the anchor; is number of pairs of parallel anchor branches.
Approximating the saturation curve with a linear dependence:


		(59)



Let us rewrite the expressions for and  in the form: 


		(60)



where:  is the proportionality coefficient (Wb/A).




Considering that in differential equations (55) – (57)  and  at  and  we can find the static characteristics of the motor:
1) for a motor with independent excitation (and parallel):


		(61)


		(62)





2) for a series-excited motor (, is the total voltage, which in a DC electric motor drops across the armature winding and the excitation winding, :


		(63)


Basically,  is the static characteristics of the engine.

If  is presented in the following form (taking into account the considerations given above for systems with short-circuited induction motors):


		(64)


then the duration of the transition process of start-up () is determined for the first and second types of DC electric motors as:


		(65)




If we ignore the value  compared to  as a small value (), for the duration of the start-up transition process we have:
1) for an independently excited motor (and with parallel excitation) –


		(66)

2) for a series-excited motor –


		(67)

Numerical calculations were performed on a computer to determine the maximum values of dynamic coefficients depending on the rate of change of the enforced force frequency and linear friction, which allows to determine the maximum amplitude of vibrations for given system parameters and transition process quickly and with sufficient accuracy for engineering calculations. 

The maximum amplitude of non-stationary oscillations depends on several parameters  However, thanks to the use of dimensionless coefficients and the identification of dominant terms in the solutions, it is possible to construct simple dependencies (including graphs) that cover all possible combinations of the abovementioned parameters in practice.

In order to reduce the number of calculations, we will use an approximate but quite successful formula by A.M. Kats [15], which determines the frequency value  at which the maximum amplitude of non-stationary oscillations is achieved.
In the designations introduced above, the formula by A.M. Kats has the following form f = 1/2 sin(ω sinφ):


		(68)


where:  The formula (68) quite accurately determines the position of the maximum amplitude of oscillations, which is confirmed by our numerous calculations on a personal computer.





Table 1 shows the maximum values of the dynamic coefficient for non-stationary forced oscillations with variable frequency () for different values of the dynamic coefficient at steady resonance (), parameters  and , where 


Table 1. Maximum values of the dynamic coefficient  for non-stationary forced vibrations with variable frequency
	

	

	

	

	
с-2

	60
	1.0161
	108.8
	0.482
	74.9

	40
	1.0116
	43.65
	1.202
	74.9

	36
	1.0652
	108.8
	0.1415
	74.9

	17
	1.1370
	40.0
	0.1795
	111.46

	8
	1.3685
	40.0
	0.0708
	64.6






Table 2 shows the maximum values of the dynamic coefficient for non-stationary forced vibrations with variable frequency () for different values of the coefficient , .




Table 2. Maximum values of the dynamic coefficient  for non-stationary forced vibrations with variable frequency for 50 depending on 
	

	

	


	0.4
	1.0439
	33

	0.2
	1.0973
	22

	0.1
	1.2054
	13


CONCLUSION
1. A well - grounded physical and mechanical model for analyzing non-stationary oscillations of engine-drive systems in tracked vehicles has been developed, and the main patterns of their transition to a state of stationary oscillations in the presence of resonance phenomena during start-up have been established. 
2. The analysis of the process of passing through the resonance of the mechanical system “engine-drive” of a tracked vehicle during its start-up revealed the following characteristic features of this phenomenon:

1) The maximum amplitude of non-stationary oscillations occurs not at the moment when the frequency of the enforced force coincides with the natural frequency of the system, but later, i.e., the maximum during acceleration/start-up shifts toward higher frequencies; the shift increases with an increase in the rate of change of frequency ();
2) the value of the maximum amplitude depends on the speed of passage through the resonance zone and is always less than the amplitude at steady-state resonance; this dependence can be used as a means of limiting the maximum amplitude of oscillations; the higher the rate of change of the frequency of the external force, the smaller the maximum amplitude of oscillations;


3) after reaching the first maximum (in numerical calculations on a computer), damped amplitude oscillations are observed; the greater  at low friction (), the more characteristic it is for several smaller maxima to appear immediately after the first maximum;

4) the intensity of the first maximum of the resonance curve is less than the intensity of the steady-state resonance curve and the less, the more is.
3. The laws of motion of the motor rotor of the mechanical system “motor-drive” of a tracked vehicle have been established, under which the root mean square value of the effective torque acting on the motor shaft and its rate of change over time are minimized during start-up.

4. For different types of engines, analytical dependencies have been determined for establishing the values of the actual duration of the transition process (start-up) (), as well as the conditions under which resonance in the “engine-drive” system of a tracked vehicle occurs precisely during this period of time.
5. The results obtained in this study can be used in the future to refine and improve existing engineering methods for calculating the mechanical systems “engine-drive” of tracked vehicles, both at the design and construction stages and in real operating conditions.
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