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Abstract. The calculation of flexible rectangular plates is a complex problem in the theory of elasticity. This is due to the need to solve integro-differential equations, which include partial derivatives of the fourth order. The article proposes an analytical approach to the calculation of flexible rectangular plates that have one clamped side and are supported by a number of discrete columns arranged in an arbitrary order. The proposed method is based on a combination of the fictitious clamping principle, i.e., dividing the plate into longitudinal and transverse strips, as well as taking into account their joint work. This approach allows you to accurately model the distribution of forces and moments in the plate, even under complex loading schemes. A feature of the method is the ability to construct influence lines for different parameters, which makes it suitable for engineering analysis and educational applications. The method does not require the use of specialized software, is transparent for verification and is easily adaptable to different types of plates and support conditions. This opens up opportunities for its integration into training courses in structural mechanics and building structures. The article provides examples with practical application of calculations that confirm the accuracy and efficiency of the proposed approach. The results demonstrate that the method provides sufficient flexibility for adaptation to real design conditions and the possibility of its use for verification of simulation models developed using specialized software packages.
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Introduction
The theory of plate calculation is one of the fundamental branches of structural mechanics, which is of crucial importance for the design and analysis of various engineering structures. Flexible plates are key load-bearing elements in bridge construction, aircraft construction, mechanical engineering and civil engineering, where their reliability is critically important. At the same time, their analytical calculation is a complex problem in the theory of elasticity. This is attributable to the necessity of solving integro-differential equations, which include partial derivatives of the fourth order. Their solution is difficult even when the right-hand side contains a function according to which the external load changes, that is, when a continuous external load acts on the plate, the intensity of which varies according to some law. More often, this is a uniformly distributed load. If it is not applied over the entire area of the plate (the so-called fragmented load) or the load is in the form of concentrated forces and moments, solving differential equations, in mathematical terms, becomes significantly more complicated. The problem is also complicated because it is necessary to take into account the conditions of supporting the sides of the plate (the so-called initial conditions of support), as well as the conditions of support on the columns.
Literature Review
[bookmark: _GoBack]Various mathematical techniques are used for the analytical calculation of flexible plates. Awrejcewicz J. et al. [1] proposed a modified version of the Bubnov-Galiorkin method (BGM), combined with the Fourier method of separating variables, which allows to effectively solve elliptic nonlinear equations of the eighth order. This approach makes it possible to study rectangular thin plates with large deflections in a static formulation. Nuraliev F. M. et al. [2] used a combined approach to calculate orthotropic plates of complex shape, which combines the Rvachev's R-functions method for describing the geometry and boundary conditions, the Bubnov–Galiorkin variational method for discretizing spatial variables, and the method of successive approximations for linearizing nonlinear equations. The authors built a mathematical model based on the Lagrange principle, taking into account different types of edge fixation and the presence of cutouts. Jaberzadeh E. and Azhari M. [3] proposed a solution for determining the loss of stability of flexible plates under the action of non-uniform compression using the Galiorkin method, which allowed to formulate the problem as a spectral one, using a combination of trigonometric and polynomial functions that satisfy the boundary conditions. The theoretical model is based on the von Karman plate equations, and for taking into account plastic deformations, the theory of deformations with a modification of the stiffness matrix was used. This solution is intended for the calculation of plates reinforced with stiffeners and flanges of I-beams under biaxial bending conditions.
Thus, the analytical approach to the calculation of structures that include plates is constantly being improved. Calculation methods are becoming more accurate, as well as more complex. This requires, among other things, the use and adaptation of additional software. At the same time, each approach provides solutions to specific narrow problems that are oriented to a certain shape of structures, their loads, operating conditions and support (usually along the contour of the plate).
Rapid progress in the field of computer technology and information systems has contributed to the active development of numerical methods that are distinguished by their versatility and adaptability. Thanks to the emergence of specialized software, their application has become much more convenient and accessible compared to traditional analytical approaches. Among numerical methods, a special place is occupied by the finite element method (FEM) [4], which is the basis of most modern CAE systems, such as ANSYS, Robot Structural Analysis, LIRA-FEM, SCAD Office, etc. [5-10].
Practical application of FEM to solve real engineering problems is demonstrated in the work of Endijs Virsis et al. [11]. The study developed models for assessing the bearing capacity of road structures and subgrades. The authors used FEM to simulate static tests based on the values of the parameters of the physical and mechanical properties of soil layers. The conclusions of the work confirm the high accuracy of the method, showing that the results of FEM simulation are equivalent to the results of full-scale tests with an average error within 3% when using static sounding data. Milligan G. J. et al. [12] performed an in-depth numerical analysis of the punching of reinforced concrete slabs supported by rectangular columns using parametric finite element modeling. The authors took into account the nonlinear behavior of materials, including the plasticity of concrete, reinforcement tension and crack development, which allowed them to accurately reproduce the mechanism of failure in the punching zone. Special attention is paid to the influence the ratio of the size of the column sides, their minimum cross-sectional area, and the effective thickness of the slab has on the ultimate bearing capacity. The studies were conducted in the ABAQUS software package, and the verification of the developed model was carried out using seven experimental slab samples.
In the work of Lee T.-H. et al. [13] the authors presented an experimental and numerical study of the behavior of plate structures reinforced with tubular rods. Experimental studies were carried out on a test rig that reproduces a 4-point bend. The deformation was measured by strain gauges attached to the reinforcement. Simulation modeling was performed using the finite element method in the LS-DYNA program. This application allows taking into account the dynamic behavior of materials and structures using an explicit solver. Verification of the model was carried out by analyzing previous studies and comparing the results with experimental data. It showed the adequacy of simulation modeling and the possibility of obtaining additional information using computer studies. Unlike analytical methods, which give functional dependencies on the output, the result of the calculation by numerical methods is a set of discrete values. Such a database is more difficult to analyze, search for optima and trends. Wang Y. et al. [14] in their research considered the problem of monitoring the stress-strain state of a flexible plate in a wind tunnel. The study used fiber-optic Bragg sensors (FBG) to obtain point values of deformations. To convert this information into a full stress field, which allows to identify concentration zones, the authors used the method of spline interpolation with parameterization by the arc length. Such post-processing of data is important for discrete methods and provides them with additional functionality.
Another widely used method in structural calculations is the finite difference method (FDM). Mirsaidov M. et al. [15] in their work developed a numerical-analytical method based on FDM for solving dynamics problems. The authors investigated forced oscillations of a rectangular plate supported on vertical rods under the action of kinematic effects that simulate seismic loads. The method allowed to determine the zones of the largest bending moments and shear forces, which is of great importance for ensuring the seismic resistance of buildings.
Determining the deformations of flexible bodies is a popular calculation in the video game development industry. Of course, the primary requirement here is the speed of calculations and minimizing the use of computing resources. At the same time, the accuracy is the visual similarity of the results to real processes. But the development of the computer equipment power and the improvement of modeling methods allows the implementation of fast algorithms with high-precision results [16]. Ovcharenko O. et al. [17] considered in their work the possibility of using the Extended Position Based Dynamics (XPBD) method in structural calculations. Compared to FEM, it is faster, while providing a physically justified result. XPBD uses an explicit solver and is intended primarily for dynamic problems, but by reducing the loading speed and increasing the damping coefficients, the problem can be reduced to static conditions.
Artificial intelligence (AI) has become a new direction in the development of humanity. Together with building information modeling (BIM) technologies, AI is transforming the construction industry. For example, Autodesk Revit offers to use a generative design script in construction, which, along with Autodesk Robot Structural, optimizes the placement and parameters of structural elements (beams, columns, slabs, foundations, etc.) [18].
In the study of Zhe Hu et al. [19], an innovative approach to correcting the design parameters of nodal plates of steel trusses of bridge structures with large spans based on the theory of machine learning is proposed. The main goal is to increase the accuracy of node stiffness modeling, which is performed using the finite element method. To do this, the authors created a digital twin of the node, which allows comparing the model displacement with a high-precision plate element. Next, to build the relationship between the parameters of the digital twin and the coefficients of the rigid shoulder, two machine learning algorithms were used: a Bayesian decision tree and an artificial neural network (ANN). It was found that ANN provides higher accuracy of correction, although both methods successfully compensate for the limitations of traditional beam models.
The analysis of publications showed the rapid development of methods for solving problems in the design of building structures, including slabs with various shapes, boundary conditions and methods of support. In practical application, preference is given to universal numerical methods, which, despite their flexibility, require significant computing resources and specialized software. However, such high-level modeling involves the integration of computational algorithms directly into the program code, which, in turn, requires careful verification of models, which can be carried out through experimental studies [20] or comparison with analytical solutions.
In this context, the development of transparent and accessible approaches to solving such narrowly specific problems as the calculation of flexible rectangular plates with one clamped side, which simultaneously rests on a number of columns, is of particular relevance. Their analytical clarity contributes to a deeper understanding of the structural deformation mechanics which is important for performing verification of computer models, as well as their introduction into the educational process with the formation of engineering competencies. In addition, the lack of dependence on powerful computing equipment and licensed software allows you to quickly obtain results with minimal costs.
Aims and Objectives
The aim of the study is to develop an approximate analytical method for the calculation of flexible rectangular slabs with one clamped side, which simultaneously support a number of columns arranged in an arbitrary order. The method is based on the approach previously proposed by V. P. Kozhushko for the calculation of bridge spans of various designs.
Materials and methodology
According to the approach, mentioned above, it is proposed to divide the plate into a series of longitudinal and transverse strips [21, 22]. The division into longitudinal strips should be carried out so that the rows of columns are located along the axis of the strip, which runs through its middle. In this case, a series of longitudinal strips will be located between the rows of columns (Fig. 1). It is desirable to apply division in such a way that the number of longitudinal strips is 7-8 or more.
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FIGURE 1. Design and basic schemes of the transverse strip

The transverse strip b' = 1 m in width should be selected at the point along the length l of the longitudinal strip where the force or displacement is to be determined.
The calculation task is to take into account the joint work of the longitudinal and transverse strips. This calculation method is close to the finite element method and is sometimes called the finite strip method (FSM).
The transverse element is proposed to be calculated as a strip on a Winkler basis. The problem is solved under conditions of plane deformation. The supporting elastic elements for the transverse strip are the longitudinal strips. It is proposed to place absolutely rigid rods between the transverse strip and the longitudinal elements, the number of which will be equal to the number of longitudinal strips. Thus, the transverse strip works as a continuous strip on elastically settling supports. When determining the forces in the rods, a mixed method of structural mechanics is suggested, for which a fictitious clamping of the left end of the transverse strip is introduced (clamping at point A). The forces Zi in the rods will be unknown (i.e., other forces are not taken into account), the angle of rotation φA and the deflection yA of the fictitious clamping. The distribution of forces will also be affected by the torques that arise during the deformation of the plate, but they are not difficult to consider, as shown in the works [21, 22]. Other internal forces have almost no effect on the distribution capacity of the plate.
Results 
To determine the specified unknowns, it is necessary to solve the system of equations (1) with n + 2 unknowns, where n is the number of longitudinal stripes (there are seven of these stripes in the figure).


		()

where Zi stands for vertical forces transmitted by the transverse strip to the longitudinal strips;
δik – unit displacement of the transverse strip at a point і from a single unit force Zk=1, applied at the point k;
ΔiP – displacement of the transverse strip from external forces (free members). To simplify the definition ΔiP the external load should be replaced by an equivalent uniformly distributed load of intensity qекв, which would cause the same force or displacement as the sum of the loads applied to the plate;
φА and yА – respectively, the angle of rotation and the vertical displacement of the fictitious clamping of the transverse strip at the point А.

The last two equations in system (1) are equilibrium equations.
Unit displacements δik should be defined by the formula


		()

where Vik means displacement of the transverse strip at a point i from a single unit force Zk=1 applied at the point k. They are determined according to the well-known rules of structural mechanics, considering the transverse strip as a cantilever clamped at a point А.


		()


where  – cylindrical stiffness of the transverse strip with width of b' = 1 m;
d – width of longitudinal stripes.

Value 


		()

where ai – distance from the clamping point to the i-th rod (see figure).

Formula (4) is valid when k ≥ і. If k < i, then the indices in the formula must be swapped. To simplify the definition wik compiled tables of values wik for relative values ai/d, varying from 0.5 to 20 with gradation of 0.5 [21].
Main unit displacements δii at i-th point from a single effort Zі=1 equal


		()

where yіі stands for the deflection of a longitudinal strip from a unit load distributed along this strip in the section where the transverse strip is cut.

Deflection of a transverse strip Vіі is determined by formula (3), for which it is necessary to substitute into the formula


		()

Each of the first n equations of the system (1) describes the operation of only one longitudinal strip.
In order to bear in mind the effect of any external load applied anywhere along the plane of the plate, it is necessary to construct the influence lines of the forces acting on the longitudinal strips. To construct the influence line of the forces Zі on the i-th longitudinal strip in any section along its length, it is only necessary to load this beam with a uniformly distributed load with an intensity q = 1 kN/m and then solve the system of equations (1). The forces in the i-th rods will actually be the ordinates of the influence line of the forces. Thus, to construct the influence lines of the forces from all longitudinal strips, it is necessary to solve the system of equations (1) n number of times, in which only the values of the free terms Δip will change. If we set a single uniformly distributed load on the cantilevers of the transverse strip, i.e., in the area of fictitious clamping (point A) and at the end of the right cantilever (point B), then it will be necessary to solve the system of equations (1) (n + 2) times.
The deflections yii included in formula (5) will be different for different longitudinal strips, since their static scheme is different. For example, for strips 1, 3, 5 and 7 (Fig. 1) the deflection from a uniformly distributed load with intensity q = 1 in the cross section can be determined as in the cantilever strip by the formula


		()

where x stands for the distance from the end of the console of the longitudinal strip to the section in which the transverse strip is cut;
l – for the span (length) of the console;

 – for the cylindrical stiffness of the longitudinal strip with width of d.

For strips 2 and 6 (Fig. 1), the deflection should be determined as for a continuous strip with 4 spans, one clamped at the end and a cantilever at the other end. Let us denote this deflection y2.
When determining the deflection y3 of the middle longitudinal strip (strip 3 in Fig. 1), it should be considered as a continuous three-span strip with one clamped end and a cantilever at the other end.
To simplify the determination of unit displacements δik and free terms Δip when constructing the influence lines of forces, we multiply the first n equations of system (1) by the value 1/ y1.
Then the formula for determining the increased unit displacements δ'ik will have the following form.


		()

		()

Then


		()

and the enlarged free member 


		()

The main unit displacements will also be increased for δ'iі, the formulas for determining which will be different for different longitudinal strips. Thus, for longitudinal strips 1, 3, 5 and 7 (Figure 1)


		()
for strips 2 and 6

		()
for strip 4

		()


where  and 

These formulas should be used when the transverse strip is cut outside the columns (for example, in the figure, it is a 1'' crossbar).
But for a transverse strip 1' the formula (14) will be different.


		()

Since β2 = 0. Deflection y3 of this longitudinal strip is zero, since the columns is located in this section.



The coefficients at the angles of rotation of the fictitious clamping φА will also be increased in 1/ y1 times and will be the following: . Multiplying and dividing the coefficients at φA by d, we obtain . Now we have the relative distance  from a fictitious deposit. Let us denote


		()


Then the coefficients at  will be equal to: for the first longitudinal strip (in the first equation of system (1) – 0.5; for the second strip – 1.5; for the n-th strip – (n – 0.5)), respectively.
After multiplying the first n equations by 1/ y1 the deflection yn of the fictitious clamping will also be increased. Let us denote it as follows:


		()

Then the coefficients at the value y’n in all equations will be equal to one. 
The last two equations of the system (1) after some transformations will have the following form:


		()

		()
Discussion 
After solving the system of equations (1) at some position of the distributed load q = 1, the values of the forces will be obtained as Z1; which will be the ordinates of the influence lines, as well as the increased values for the angle of rotation φ’A and deflection y’A fictitious clamping of the transverse strip. The actual values of the rotation and deflection angle of the fictitious clamping should be determined by the formulas


		()


		()

Having loaded each line of influence with external loads, as it is proposed in the calculation of bridge spans [21], we obtain the transverse distribution coefficients (TDC) for each longitudinal strip. It is well-established that TDC takes into account the share of external loads that will be perceived by the i-th longitudinal strip. This allows us to eliminate mathematical difficulties in solving differential equations in the case when the distributed load is not applied over the entire area of the plate, or when external loads in the form of concentrated forces or moments are applied to the plate.
Each longitudinal strip will now be considered as a simple strip with certain resistance conditions, the internal forces and deformations of which are determined simply by applying the solution methods proposed by structural mechanics.
Having the ordinates of the influence lines for forces on the longitudinal strips in some sections along their length, it is possible to construct the influence lines of bending moments and transverse forces in the transverse strip [21]. After loading them with external loads, the internal forces that will act across the plate will be determined.
Longitudinal strips can have different widths dі, and even different lengths lі. This does not lead to complications, since in the system of equations (1) each of the first n equations describes the work of one longitudinal strip, therefore all the formulas given in the article for determining unit displacements and free members will be suitable. To do this, it is necessary to substitute into these formulas for each element corresponding values of bending stiffness, the width of the longitudinal strip dі and the length of the longitudinal strip lі.
Conclusions
The proposed method allows effective calculation of plates with any support scheme on columns and under the action of arbitrary external loads.
The method is close to the finite element method, but does not require complex software, which makes it accessible for practical application and training.
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