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Abstract. This article addresses the challenge of enhancing the sustainability of production systems, which cannot be achieved solely by deploying renewable energy sources. Effective decarbonization requires a systemic approach that combines energy-efficiency measures, the substitution of technological processes with more sustainable solutions, and the integration of low-carbon energy sources. To this end, a model is proposed that defines the complete solution space for optimization, structured into three blocks: energy efficiency, sustainable technologies, and decarbonization of generation. The novelty of the model lies in providing, for the first time, a formalized framework for systematizing all potential measures. This also creates the possibility of training artificial intelligence on a complete set of structured solutions. Based on the model, key requirements are identified for a digital decarbonization platform: ease of use, universality across different production systems, customization for individual enterprises, and a focus on long-term objectives. The generalized architecture of the platform includes a knowledge base, a sequential selection algorithm, and an analytical module. Particular emphasis is placed on the knowledge base, which is filled with applied measures according to the method structures of the model. As an illustration, a fragment of the knowledge base for heating systems with a gas boiler is presented.
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INTRODUCTION
Modern global and European development strategies – such as the United Nations Sustainable Development Goals [1], the European Green Deal [2], and the Fit for 55 initiatives [3] – outline a dual vector of transformation in the energy sector. This includes not only increasing the share of renewable energy sources but also significantly reducing the energy intensity of production as a key condition for the decarbonization of the economy.
In current approaches, the concept of the “energy efficiency hierarchy” [4] is increasingly applied, defining the sequence of steps for reducing emissions and improving the efficiency of energy use:
1. Optimization of energy consumption – energy-efficiency measures that reduce the initial demand for energy resources.
2. Implementation of sustainable technologies – substitution of technological processes with more efficient and less environmentally harmful solutions.
3. Transition to renewable and low-carbon sources – covering residual demand with cleaner energy [5].
[bookmark: _GoBack]This logic helps to avoid resource waste and provides the foundation for long-term decarbonization. Figure 1 illustrates the sequence of actions that reduce energy consumption and ensure decarbonization in production systems.
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FIGURE 1. Algorithm for ensuring energy efficiency and decarbonization of industrial facilities


At the same time, the main challenges of decarbonization arise not for large corporations, which have their own strategies and resources, but in the small and medium-sized enterprise (SME) sector. SMEs are characterized by limited financial and human resources, which complicates the implementation of energy audits and the independent assessment of pathways to enhance the sustainability of their operations.
SMEs account for more than 99% of enterprises in the EU [6] and about 95% in Ukraine [7], forming the backbone of economic activity. Many of these companies operate in energy-intensive sectors such as food production, mechanical engineering, and transport. Due to the absence of in-house energy managers and sustainability consultants, SMEs often operate equipment with low efficiency, resulting in increased energy costs and higher carbon emissions. This creates an additional barrier to their competitiveness in markets where environmental criteria are gaining increasing importance.
Despite the existence of certain support programs for SME energy efficiency, most of them are fragmented and temporary: they allow enterprises to implement a few measures but do not establish a systemic approach. One of the most significant barriers for SMEs is the shortage of qualified specialists capable of conducting continuous monitoring and providing solutions based on the analysis of technological processes. According to sectoral studies, fewer than 20% of Ukrainian enterprises have internal energy or environmental departments, and among SMEs this figure is even lower. As a result, most solutions remain at the level of “do once and forget” rather than becoming part of a long-term decarbonization strategy. This is particularly critical given that carbon emissions are often linked not only to inefficient equipment but also to structural features of production processes that require replacement with more sustainable technologies.
Therefore, there is a pressing need for simple digital tools that can help enterprises, even without highly specialized staff, to identify options for improving energy efficiency, optimizing production processes, and gradually transitioning to low-carbon solutions.
Literature Review
In many sources, energy efficiency is recognized as the fundamental and most important step toward the decarbonization of production systems, since without its implementation, further measures – such as the integration of renewable energy sources or the use of carbon capture and storage technologies – cannot achieve the expected outcomes [8–12]. Existing approaches encompass technological, organizational, and digital solutions, forming the logical framework of “energy efficiency first” for the further transformation of production.
At the same time, the practical implementation of such approaches requires diagnostic tools capable of detecting and quantitatively assessing the areas of greatest energy loss. An example of such a methodology is 2E-DAmIcS, which is based on the mapping of energy-loss risks in production processes and enables the identification of the most energy-intensive stages, assessment of loss risks, and determination of priority areas for reducing resource consumption [13]. The use of this tool contributes not only to lowering energy costs but also to reducing emissions, thus providing a foundation for decision-making on modernization and efficiency improvement in production.
In recent years, industrial decarbonization has increasingly focused on solutions that directly transform enterprises’ energy-consuming systems, particularly process heat electrification, the application of power-to-heat technologies, and hybrid energy configurations with renewables [8]. Electrification options include electric boilers, resistance heating, industrial heat pumps, and high-temperature induction, with their applicability evaluated according to temperature ranges and economic conditions [14–18]. Among these technologies, industrial heat pumps (IHPs) demonstrate the greatest potential, achieving process-heat savings of up to 30% and payback periods of less than two years under favorable conditions [19]. For electric boilers and other electric heating systems, the literature details application areas, cost-abatement curves, integration with thermal storage, and grid-flexibility requirements [20]. In parallel, hybrid industrial energy systems based on renewables are evolving, viewed as integrated “utility systems” supplying electricity, heat, and cooling, and combining with heat pumps and storage [21].
The electrification of low-temperature heat (<80 °C) is already economically viable, but its wider deployment is hindered by tariffs, access to “clean” electricity, a lack of integrators, and cybersecurity risks [22]. The literature converges on the conclusion that energy efficiency is the first step, power-to-heat is the key driver, and hybrid configurations with renewables increase the share of “green” energy; all of these solutions are accompanied by digital tools for monitoring and optimization [8, 14, 21].
Expert systems remain a promising instrument for enhancing energy efficiency, applied at the levels of processes, machines, and plants, and covering both series and mass production [23]. Common rule-based and fuzzy approaches are combined with machine learning and simulations. Examples include the optimization of cement kilns, metallurgy, casting, welding, the management of heat exchangers and ventilation, and the selection of metal-processing parameters. The challenges are related to scaling and the costs of developing knowledge bases, which underscores the need for more universal solutions and integration with digital platforms and twins. Generalized examples are presented in Table 1.

	TABLE 1. Examples of artificial intelligence applications in production systems

	Tasks
	Examples of methods
	Implementation status / results

	
Monitoring and forecasting (energy consumption, equipment condition, tool wear)

	
Deep Learning (LSTM, CNN, GRU); classical ML (Random Forest, SVM, regression)
	
Real cases in CNC, milling, welding; prediction accuracy is high, but scalability is limited

	Real-time control (optimization of idle modes, source switching, line monitoring)

	Reinforcement Learning (DQN, PPO, Actor-Critic); ML models for state prediction
	Pilot projects and simulations; isolated cases in workshops; potential for reducing energy consumption and costs

	Planning and scheduling (task and resource allocation)

	RL (DQN, Q-Learning), deep NNs for optimal schedule prediction

	Most solutions at the simulation level; promising results for reducing energy consumption and production time

	Process parameter optimization (cutting speed, temperature, force)
	Neural networks, hybrids (NN + genetic algorithms, swarm optimization)
	The most widely implemented area: real cases in metalworking and welding; reduction of waste, improvement of quality



Another key direction in the digitalization of production is digital twins – virtual replicas of processes or equipment that are continuously updated with real-time data and applied for monitoring, predictive maintenance, and energy consumption optimization [24, 25]. They can reduce energy costs by up to 30% and improve the stability of technological processes [26], yet their deployment is constrained by the high cost of model development, the need for large volumes of high-quality data, and cybersecurity risks. Prospects for further development are associated with the integration of digital twins with artificial intelligence and energy management systems, enabling scalability from the level of individual machines to entire enterprises. A systematic review [27–30] confirms their growing role not only as a tool for production process optimization but also for improving energy efficiency. An analysis of more than 50 studies indicates that such solutions are already being implemented in various domains:
· Industrial processes – optimization of equipment operating parameters, reduction of waste, enhancement of process stability, and minimization of energy losses.
· Intelligent buildings – real-time management of HVAC systems, indoor air quality, and lighting to reduce energy consumption while improving occupant comfort.
· Renewable energy and power grids – forecasting of variable generation, balancing distributed sources, improving distribution efficiency, and integrating storage.
The application of digital twins makes it possible to reduce energy consumption by up to 30%, lower operating costs, and improve the accuracy of predictive maintenance; however, their large-scale deployment is constrained by high costs, the need for high-quality data, and cybersecurity risks. Further development is linked to standardization, cost reduction, and integration with AI and energy management platforms.
Previous studies demonstrate the effectiveness of expert systems and digital twins, yet their large-scale implementation has often been limited by the insufficient quality of knowledge bases, which were formed incompletely or unsystematically. Insufficient attention to this initial stage reduced the effectiveness of digital solutions in production. Therefore, there is a need for a formalized model that ensures the systematic population of the knowledge base with the full set of possible measures.
RESEARCH AIM AND OBJECTIVES
The aim of the study is to develop a model for enhancing the sustainability of production systems, which provides a formalized definition of the full set of possible measures and serves as the basis for creating a digital tool to support the decarbonization of small and medium-sized enterprises.

To achieve this aim, the following objectives should be accomplished:
1. Define the sets of production system objects and the corresponding sets of measures in the three blocks of the model: energy efficiency, sustainable technologies, and generation decarbonization.
2. Develop a model for enhancing the sustainability of production systems based on the defined objects and measures.
3. Establish a generalized architecture of the digital sustainability support tool for production systems based on the proposed model.
4. Demonstrate a fragment of the knowledge base with practical solutions for a heating system with a gas boiler.
MATERIALS AND METHODS FOR SUSTAINABILITY MODELING 
Sustainable Development Goal No. 7, «Affordable and Clean Energy» encompasses tasks related to improving energy efficiency, modernizing technologies, and expanding the use of renewable and low-carbon energy sources. Its implementation requires not only state programs but also applied solutions accessible to small and medium-sized enterprises. One approach in this direction has been the creation of a generalized model that systematically describes which objects in production systems consume energy and what actions can be applied to improve their efficiency [30]. This model provides a clear framework based on the relationship between the set of energy analysis objects (OS) and the set of methods (MS). All possible measures are incorporated into this framework, forming a complete knowledge base from which specific actions can later be selected and combined according to the parameters of a given enterprise.
In this article, the proposed model is expanded to reflect the full hierarchy of measures – from demand-side energy optimization to the implementation of sustainable technologies and the decarbonization of generation. The developed structure includes three blocks that are analyzed sequentially rather than simultaneously. This approach avoids duplication of solutions and ensures a logical transition from the simplest and fastest measures to more complex technological transformations:
· Block 1. Energy efficiency – identifies all possible solutions related to reducing initial consumption and eliminating unreasonable losses.
· Block 2. Sustainable technologies – assesses the feasibility of technological substitution of energy-intensive processes, electrification, and the implementation of circular solutions.
· Block 3. Decarbonization of generation – at the final stage, considers the possibilities of transitioning to renewable and low-carbon energy sources to meet the residual demand.
Each of these blocks includes its own set of objects and the corresponding set of methods. In this way, a generalized conceptual model is formed, ensuring a comprehensive analysis of opportunities for improving efficiency and sustainability. The logic of model construction and the interaction between objects and methods are illustrated in Figure 2.
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FIGURE 2. Systematization of elements in the model for enhancing the sustainability of production systems: 
(a) Energy Efficiency; (b) Sustainable Technologies; (c) Decarbonization of Generation


In the first block – energy efficiency – the analysis covers all three objects of the production system: generation, transmission, and consumption. This is because losses and inefficient use of energy can occur at any point along the chain.
By contrast, in the second block – sustainable technologies – the only object is the energy consumer. This is explained by the fact that the technological substitution of processes directly concerns end use. Updating the core technology automatically alters the requirements for transporting energy resources, so a separate assessment of the transmission section is not required.
In the third block – decarbonization of generation – the object is limited to the generation unit, since decisions on the integration of renewable sources or the shift to low-carbon fuels are made at this level.
The methods included in the three blocks are generic in nature. Each can encompass a large number of concrete and quite heterogeneous measures – from organizational steps to high-technology solutions. Populating these methods with applied measures requires substantial specialized knowledge and consideration of the specifics of the particular production system. Accordingly, in the model they serve as high-level frames that structure subsequent analysis, rather than an exhaustive catalogue of all possible options.
The generalized model is sequential and prescribes a step-by-step analysis of the three blocks, from energy efficiency to sustainable technologies and finally to the decarbonization of generation. Formally, the model for enhancing the sustainability of production systems is expressed as the Cartesian product of the set of energy analysis objects and the set of methods, which defines the full solution space of feasible pathways to sustainability in production systems:


		(1)

where i - the type of production system; "→" – sequential application of the model blocks.

The most common types of energy-consuming production systems (i) include:
· heating;
· ventilation systems;
· air conditioning;
· compressed air;
· pumping systems;
· steam systems;
· cooling;
· lighting.

The specified list covers only typical systems that perform supporting functions at enterprises across various industries. At the same time, the model can also be applied to specialized technological systems directly related to the core production process. Their composition is not universal and must be determined individually for each sector and enterprise.
As a result of the formalization, nine methods were identified in the energy efficiency block, three in the sustainable technologies block, and three in the generation decarbonization block. Together, these structures form the full solution space of possible pathways to enhancing the sustainability of production systems. They subsequently serve as a framework for populating with relevant measures and for creating extended knowledge bases that the digital sustainability support tool will use to generate recommendations.
The next step is to transform the proposed model into a practical tool – a digital platform for the decarbonization of production processes in small and medium-sized enterprises. This tool is intended to serve as a convenient means of navigating sustainability options, enabling enterprises to quickly identify relevant solutions without the involvement of external experts. To fulfil this function, the tool must meet a set of requirements ensuring practicality and effectiveness. It should combine ease of use, universality across different production systems, sufficient analytical depth, and a focus on sustainability as a strategic priority. The complete set of these requirements is presented in Figure 3. 
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FIGURE 3. Key characteristics of the digital sustainability support tool

As a result, the key requirements for the practical application of the model were identified, serving as the basis for the further development of the architecture of the digital sustainability support tool. 
Results: Application of the Model and Tool Architecture
The further development of the research is focused on defining the architecture of the digital sustainability support tool, in which the knowledge base plays a significant role. The formation of the knowledge base relies on the structures of methods defined in the model for enhancing the sustainability of production systems (1). The first block of energy efficiency comprises nine methods, the block of sustainable solutions includes three methods, and the block of decarbonized generation also contains three. These structures provide the systemic framework that is subsequently filled with specific measures. As a result, a hierarchical knowledge base of applied solutions is created, which can be used to generate recommendations. Overall, the tool’s architecture is intended to ensure the implementation of the requirements illustrated in Figure 3 through the corresponding structural components. A concise presentation of the key elements is given in Table 2

TABLE 2. Architecture of the Digital Sustainability Support Tool
	Architectural Component
	Content Description
	Function within the Tool

	Knowledge Base
	1. Filling the method structures with applied measures that reflect possible solutions in the fields of energy efficiency, sustainable technologies, and decarbonization;
2. Involvement of AI in updating and expanding the knowledge base
	Serves as the foundation for generating a set of possible measures and for the continuous expansion of knowledge

	Sequential Selection Algorithm
	Selection of measures relevant to the enterprise’s parameters and their visualization within the structure of the three model blocks: energy efficiency, sustainable solutions, and decarbonization
	Transforms the knowledge base into practical solutions adapted to the enterprise’s conditions

	Analytical Module
	Ranking of measures according to the enterprise’s conditions and the formation of personalized scenarios using AI
	Adapts recommendations to the systems and develops implementation strategies



The formation of the knowledge base is a key stage in launching the operation of the digital sustainability support tool. At the initial stage, special attention is given to the first block of the model – energy efficiency measures. For these solutions, it is important to ensure an individual selection that takes into account both economic feasibility and effectiveness for a specific enterprise. Based on such data, the tool can generate practically relevant recommendations. In this example, the knowledge base is filled in accordance with the six method structures of the first block of the model, which relates to energy efficiency:

RICGU – reduction of initial consumption at the generation unit;
EULGU – elimination of unreasonable losses at the generation unit;
RICTS – reduction of initial consumption at the transmission section;
EULTS – elimination of unreasonable losses at the transmission section;
RICEC – reduction of initial consumption at the energy consumer;
EULEC – elimination of unreasonable losses at the energy consumer.

These structural methods form the basis for filling the knowledge base with applied measures. as an example, table 3 presents a fragment of such a base for the heating system, illustrating the practical possibilities of detailing the model.

TABLE 3. Fragment of the knowledge base (energy efficiency block) for the heating system with a gas boiler
	Method
	Measure

	RICGU
	Development of operating charts for boiler units at different loads;

	
	Recalculation of burner nozzles for actual load;

	
	Adjustment of boiler unit automation;

	
	Equipping the boiler house with control and regulation instruments;
…

	EULGU
	Modernization of the water treatment system;

	
	Installation of an economizer;

	
	Cleaning of the furnace surfaces of the boiler;

	
	Cleaning of the boiler surfaces on the water side;

	
	Reduction of excess air;

	
	Regular maintenance of burners;

	
	Restoration of boiler unit insulation;

	
	Elimination of equipment leakages causing air infiltration;
…

	RICTS
	Installation of a frequency converter on the pump motor;

	
	Replacement of the pump with a more energy-efficient one;

	
	Elimination (reduction) of the heat carrier transmission section;
…

	EULTS
	Hydraulic adjustment of the heat pipeline;

	
	Modernization of pipeline shut-off and control valves;

	
	Elimination of heat carrier leaks;

	
	Reduction of local pressure losses along the entire pipeline;

	
	Restoration of the integrity of the pipeline insulation layer;
…

	RICEC
	Installation of thermostats in the heated premises;

	
	Installation of temperature regulators to the set temperature;

	
	Adjustment of heat carrier flow according to demand and working hours;;
…

	EULEC
	Ensuring uniform heat distribution across consumption objects;

	
	Replacement of radiators with more energy-efficient ones;

	
	Cleaning of internal radiator surfaces;

	
	Reduction of external air infiltration into heated premises;

	
	Increase in the heat transfer area by convection;
…



The tool’s algorithm generates recommendations in the following sequence: first for the energy consumer (EC), then for the transmission section (TS), and only afterwards for the generation unit (GU). This order was chosen because the largest potential for savings is usually concentrated on the consumer side and in the process of energy delivery. The analysis of generation becomes relevant at the final stage, when demand has already been optimized and losses reduced, making the actual amount of required energy clear.
The results therefore confirm the validity of the proposed model as a basis for developing a digital platform for the decarbonization of production processes. The presented architecture demonstrates that the knowledge base, combined with the sequential selection algorithm and the analytical module, can ensure practical adaptation of solutions to the conditions of a specific enterprise and the formation of implementation scenarios. An important advantage of the model is that it creates conditions for training and enables the involvement of artificial neural networks in enriching the knowledge base, which opens up prospects for scaling and further automation of the measure selection process. This provides a foundation for subsequent conclusions and recommendations.
CONCLUSION
1. On its own, the large-scale deployment of renewable energy sources does not constitute an optimal pathway to decarbonization. An effective transition requires a systemic approach that combines energy-efficiency measures, technological process substitution with more sustainable solutions, and the integration of low-carbon energy sources. For small and medium-sized enterprises, this multi-pronged approach is challenging; therefore, they need simple tools to navigate the available options.
2. This work proposes a model for enhancing the sustainability of production systems that organizes three blocks of methods: energy efficiency, sustainable technologies, and decarbonization of generation. The model defines the full solution space of optimization pathways and provides a basis for digital implementation.
3. The proposed model underpins the development of a digital sustainability-support tool. Key requirements include ease of use without involving external experts, a universal architecture applicable across different production systems, customization to a specific enterprise, and a focus on long-term objectives.
4. A generalized tool architecture has been developed; it comprises a knowledge base, a sequential selection algorithm, and an analytical module that together meet these requirements.
5. Development has commenced on an applied version of the tool for industrial heating systems, moving the work from concept to practice and enabling validation of the model on the most widespread energy-consuming system.
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