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Abstract. The article proposes a hydraulic model of soliton-like waves in open channels, i.e., those localized in space, do not change shape, and move with a constant velocity. A qualitative comparison is made with previously proposed models based on the Korteweg-de Vries and Saint-Venant equations. The model main advantage is a certain deviation from the conditions of smoothly varying motion, associated with taking into account centrifugal forces of inertia and the corresponding violation of the hydrostatic law in live sections. The main advantage of the model is that it allows you to obtain the characteristics of the wave profile and conduct its analysis. To verify of the theoretical conclusions, a numerical simulation of a two-phase water-air flow in steady and unsteady modes was carried out using the OpenFOAM software.
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INTRODUCTION
[bookmark: _Hlk206065433]The most responsible road structures on watercourses are bridge crossings. They are directly affected by wave excitations such as floods, filling waves during dam breaks and collapses, and surge waves during changes in water levels in reservoirs. Structurally stable wave excitations in a nonlinear medium propagating at a constant velocity without changing shape and remaining localized are called solitons. It is believed that the emergence of a soliton results from two factors. One contributes to an increase in the width of the wave, and the other to a decrease in its width and an increase in its steepness. In the case of potential motion of an ideal fluid, such factors are nonlinearity, which increases the steepness of the wave profile and is a manifestation of inertial forces, as well as dispersion, which leads to the divergence of the wave packet and is a manifestation of the action of gravitational forces. Such a soliton is described by the Korteweg-de Vries equation [1-6]. In the case of turbulent motion of a real fluid, dissipation becomes the main cause of wave smoothing. As a result of the competition between nonlinearity and losses, a soliton is generated, which can be obtained from the Saint-Venant equation [7] in the form of a step or shock wave.
A disadvantage of the models considered is that in a real situation, the action of all three forces should be taken into account: the forces of inertia, the forces of gravity, and the forces of internal friction. In addition, in both cases, the equations are obtained under conditions of smoothly varying fluid motion, i.e., they do not consider the centrifugal forces of inertia that arise when particle trajectories are curved and disrupt the hydrostatic pressure distribution in live flow sections.
The purpose of the work is to obtain equations free from the aforementioned shortcomings of previous models and such that describe all soliton-like formations in open channels without exception, to analyze these equations to solve them, to determine the main characteristics of the waves, and to verify the results of theoretical calculations using numerical methods.
Mathematical modeling of soliton-like waves in open channel



[bookmark: _heading=h.gjdgxs][bookmark: _Hlk180417563][bookmark: _Hlk206165409]Consider a structurally stable isolated wave moving in a rectangular prismatic channel with a constant velocity. Let us move to a moving coordinate system where the wave is stationary. In this case, you can use the stationary equation of rapidly changing motion, which includes the specific force of gravity , the specific force of friction , and the specific force of inertia . By specific inertia force we mean the projection of the resultant centrifugal forces that arise during the curvature of the jets onto the direction of the main flow.
Thus, the general form of the equation of rapidly varying flow in a rectangular prismatic channel is:


[bookmark: _Hlk181975176][bookmark: _Hlk181974629]		(1)


[bookmark: _Hlk206167373]The specific energy of the cross section consists of the specific potential energy of gravitational forces, which is equal to the depth , and the specific kinetic energy:


[bookmark: _Hlk181975485][bookmark: _Hlk181975470]		(2)





The relative specific flowrate  and wave velocity  are expressed through the absolute specific flowrates and depths at the beginning  and end  of the wave from the continuity equation:


		(3)

The conjugate depths are related by the momentum change theorem:


		(4)

To obtain a linear equation of abruptly changing motion, we will assume that


		(5)

We will consider the specific centrifugal force of inertia as the product of the square of the critical velocity and the curvature of the wave: 


[bookmark: _Hlk206416902]		(6)

The critical depth is determined from the critical state equation:


		(7)



The coefficient  considers the deviation of the velocities in the cross section from the critical velocity, and the coefficient  of the deviation of the curvature of the trajectories from the curvature of the wave surface.
We linearize the equation by switching to new dimensionless variables according to the formulas


		(8)

we obtain the equation of abruptly changing motion in the form


		(9)



The coefficients of the equation depend on the normal  and critical depth  behind the wave, slope and hydraulic index of the channel : 


		(10)

To determine arbitrary constants, we use the initial conditions:


		(11)


[bookmark: _Hlk206422335]The depth before the wave is determined from the theorem on the change in momentum, taking into account that 


Waves take on different shapes depending on the ratio of the coefficients of the equation If  is more than ,  then the surface shape will resemble a shock wave:


		(12)
 


The coefficients  and  can be found from the formulas:


		(13)



[bookmark: _Hlk206516162][bookmark: _Hlk206516177]If  less than , then the shape of the surface will resemble a multi-humped soliton:


[bookmark: _Hlk181981224]		(14)


The coefficient  are determined by the formula:


[bookmark: _Hlk181982557]		(15)



If  is equal to , then the shape of the surface will approximately correspond to a soliton:


		(16)

It is obvious that a standing wave corresponds to a hydraulic jump. It is also known that the transition from a perfect jump to a wavy one occurs when


[bookmark: _Hlk181982743]		(17)



This ratio is equivalent to the ratio , which allows us to obtain the value of the coefficient .
The obtained analytical solutions need to be confirmed by experimental or numerical modeling [8-11].
Computational Fluid Dynamics (CFD) effectively simulates two-phase free-surface flows, including solitary waves. In this work, the unsteady water–air two-phase flow generated by the propagation of a solitary wave is simulated using the OpenFOAM software package [8–11].
The accurate representation of two immiscible fluids and the approach used to capture their interface are fundamental aspects of multiphase flows' numerical simulation. To capture the free surface, advanced algorithms must be applied, whose stability and accuracy significantly affect the reliability of simulation results. Both surface and volumetric methods can be distinguished among surface tracking approaches. Surface-tracking methods explicitly represent the interface through a Lagrangian framework using marker particles or via a Eulerian approach employing a level-set function. However, these approaches face topological difficulties when the interface undergoes intense deformation. For this reason, such methods are generally regarded as unsuitable for simulating solitary waves within a practical CFD framework.
Volumetric methods are better suited for such phenomena, although they do not explicitly track a sharp interface. Instead, the interface is reconstructed within the computational cell. The Euler–Lagrange method, which couples Eulerian flow field resolution with particle tracking, has been investigated; however, its application to three-dimensional models demands prohibitively high computational resources. For this reason, a fully Eulerian approach was adopted here. The volume of fluid (VOF) method is employed, which introduces an indicator variable (α) representing the volume fraction of each phase within every grid element [12]. This method has proven to be computationally efficient and robust for wave modelling.
The Navier–Stokes equations describe the viscous incompressible flow with a moving free surface [13-14A finite volume scheme of second-order accuracy was applied with the PISO pressure–velocity coupling algorithm for their discretization. The computational domain was built in a two-dimensional formulation, with a rectangular channel geometry of 20 m and depth 0.5 m. The mesh consisted of structured cells clustered near solid boundaries to resolve the boundary layer adequately.

[image: ]
FIGURE 1. Scheme of the computational domain.
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FIGURE 2. Modeling of the soliton formation process

Boundary conditions were imposed to allow a solitary wave's generation and free propagation. (Fig. 1-2). The inlet and outlet boundaries were treated as a velocity inlet and a pressure outlet with damping zones to minimize reflections. The bottom boundary was considered a no-slip wall, while the upper boundary represented an open atmosphere.
[bookmark: _Hlk209249159]In addition, the following initial conditions were specified: the specific flow rate at the inlet was set to 0.07 m²/s 0.09 m²/s, the specific flow rate at the outlet to 0.06 m²/s 0.08 m²/s. The background flow velocity v = 0.6 m/s and v = 0.8 m/s, and the solitary wave propagation velocity was initialized as 1.22 and 2.33 m/s. 
A single wave was generated in two stages. In the first stage, numerical modeling of two-phase flow (water + air) was performed in a steady-state setup. The second stage consisted of a one-time addition of water volume and modeling of solitary wave generation in a transient setup [15-17].
Analysis of research results 
The results of numerical simulation of solitons are shown in Fig. 3-4.
The simulation results demonstrate stable propagation of a solitary wave that retains its shape and velocity over long distances, which is consistent with theoretical predictions. 
Two variants of the solitary wave (double-humped soliton and shock wave) were considered.
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[bookmark: _Hlk182901166]FIGURE 3. Velocity field of a solitary wave in a double-humped soliton.
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FIGURE 4. Velocity field in a shock wave.

The velocity and pressure fields obtained provide valuable insights into solitary waves' internal flow structure and energy distribution [18-21].
CONCLUSION
Hydraulic methods were used to obtain equations describing all soliton-like formations in open channels without exception. A linear analysis of these equations was performed. Analytical solutions were found that allowed for determining the main characteristics of the waves. The results of theoretical calculations were verified using numerical methods.
The advantage of the proposed analytical approach to describing soliton-like structures in open channels compared to previously proposed ones lies in the possibility of easily obtaining the main characteristics of such structures and conducting a detailed analysis of their connection without using numerical methods.
CFD modelling of solitary waves confirms the ability of the VOF-based Eulerian approach to accurately reproduce the key features of soliton dynamics: shape preservation, amplitude-dependent velocity, and non-linear interactions. 
The advantage of numerical modelling is the possibility of visualizing detailed velocity fields and pressure distributions, which are not accessible in analytical solutions.
These results can be further applied in the analysis of coastal and hydraulic structures and in the design of wave energy dissipators and protective engineering systems.
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