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Abstract. Consumer properties include those provided by the road: speed, continuity, safety and convenience of movement, traffic capacity and traffic load. Traffic speed is the integral indicator that reflects a motorway's main transport and operational indicators. Assessing any change in a phenomenon requires a thorough study of the parameters that characterize this phenomenon and provide quantitative expressions of these changes. The article presents the results of a survey of long-term traffic speed forecasting and mathematical modelling of the ‘human-vehicle-traffic environment’ system in the process of evolution. A model of the system's evolution at the organizational level is proposed, which allows the use of the information language of modelling. A qualitative assessment of the ‘human-car-traffic environment’ system is provided. When the system is closed, the development of its components proceeds in the direction from the actual state to the norm.  Noria is a state of functional optimum. When the norm is reached, a dynamic equilibrium occurs, which is described by a system of equations. Estimating the prospective movement speed using the solution of the dynamic equilibrium equations is possible. The article describes the prediction of functional norms of speed of movement.
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Introduction
Traffic flow is described by a set of characteristics that characterize the movement process: intensity, speed, flow composition, intervals in the flow, and some other indicators. Traffic flow has specific properties that must be considered when making decisions in the system. The speed of vehicle flow can be the main transport and operational indicator that determines the amount of transport costs [1, 2]:
– reduction in the time required to transport goods and passengers;
‒ reduction in transport costs;
‒ reduction in the consequences of natural disasters;
‒ reduction in the number of road traffic accidents;
– improved environmental situation (due to increased movement speed, reduced fuel consumption and lubricants).
Thus, speed is a key factor considered in the analysis and planning of road construction, which is relevant for Ukraine and other countries worldwide. 
Forecasting is defined as a probabilistic, reasoned judgement about the prospects and possibilities of a particular phenomenon in the future, as well as alternative paths and timeframes for its existence (Fig. 1). In practice, extrapolation, system-structured and associative methods are widely used to forecast the operational characteristics of motorways [3].
The group of extrapolation methods includes the methods of least squares, exponential smoothing, probabilistic modelling, and adaptive smoothing. The group of system-structured methods consists of functional-hierarchical modelling, matrix method, and network modelling. Associative methods include simulation modelling methods.
The primary tool for all forecasting methods is the extrapolation scheme, which involves studying time series composed of time-ordered sets of measurements of operational characteristics.
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FIGURE 1. General diagram of the forecasting process.

LONG-TERM TRAFFIC SPEED FORECAST

The primary tool used in most traffic speed prediction methods is an extrapolation scheme, which involves studying time series composed of time-ordered sets of measurements of actual speeds [3].
For the purpose of predicting traffic speeds, the time series is presented in the following form:


	,	(1)

where Vt – speed of movement;
xt – deterministic non-random component of the process (trend);
t – stochastic random component of the process.

Linear, quadratic, power, exponential, logistic functions, cubic splines, etc. are trend models in forecasting practice. The choice of function in each specific case is made according to several criteria, such as dispersion, correlation ratio, etc. The constant coefficients of the model are estimated using the least squares method. The result is a rigidly fixed trend model that does not allow for reliable forecasting over a long period. Therefore, these models are mainly used for short-term forecasting of traffic speeds on specific roads or under particular conditions.
An example of such models is the model developed by Barrel, who analyzed the degree of correlation between time and the speeds of winners in the “Indianapolis 500” race. Barrel uses a semi-logarithmic function to describe the relationship between speed and time.
A similar model by Felner V. uses a double logarithmic model to describe the same relationship. The model proposed by D. Poiret can also be classified as extrapolative, which suggests using cubic splines in the following form to describe the same processes [4]: 


	,	(2)

where i ‒ independent and usually distributed outrageous members with zero mathematical expectation and constant variance;
n ‒ the number of the year the races took place is equal to the calendar year.

It should be noted that extrapolation is suitable for highly aggregated indicators and processes with a high degree of inertia. Speed is not such an indicator which can lead to significant errors. Therefore, the extrapolation method for predicting speeds has not become widespread. The difficulties in analyzing the reasons for speed changes forced researchers to use mathematical forecasting methods.
The search for factors influencing speed has established that traffic intensity is the most important [5]. Therefore, the first mathematical models are single-factor regression models of the relationship between speed and traffic intensity [6, 7].


	,	(3)


where  ‒ average traffic flow speed;
Vsp ‒ free movement speed under reference conditions;
N ‒ traffic intensity;
 ‒ coefficient of influence of road elements;
‒ flow composition influence coefficient;
kа ‒ coefficient of influence of markings, curves in the plan, longitudinal slopes and traffic intensity.

I. Romanenko proposed a similar model to determine the socially necessary speed of movement: 


	,	(4)

where Vsn – socially necessary speed of movement.

When justifying formula (4), I. Romanenko assumed that the average speed of a calculated vehicle in modern road conditions can vary from 5 km/h to 150 km/h. These limits determined the boundary values of the input data for calculating the required speed. This formula is only valid for conditions where the average design speed of vehicles does not exceed 150 km/h. With a change in these speeds, formula (4) will become unsuitable.
Applying formulas (3) and (4) for predicting traffic speeds requires preliminary estimates of traffic intensity. Therefore, traffic intensity is first predicted (for example, by extrapolation), then a predictive speed estimate is found for the expected traffic intensity.
Further research led to constructing multifactorial regression models that consider the influence of traffic intensity and the factors that shape road conditions. However, the method of predicting traffic speeds remained the same [8]. First, traffic intensity was predicted, and then the speed was calculated for this intensity based on multivariate regression equations [9]. Examples of multivariate regression models are the models of I. Sadikov, A. Kats and D. Rasnyansky:


	,	(5)

where V ‒ average speed, km/h;
K ‒ number of road surface deformations, %;
B ‒ width of the carriageway, m;
i – longitudinal slope, %;
N ‒ traffic intensity, vehicles/hour;
р ‒ percentage of passenger cars.

A similar model has been developed in the United States:


	,	(6)

where V – average speed, miles/hour;
x1 ‒ number of cars from other states, %;
x2 ‒ number of trucks with trailers, %;
x3 ‒ road curvature, degrees;
x4 ‒ slope, %;
x5 ‒ minimum visibility distance;
x6 ‒ width of the carriageway, feet;
x7 ‒ number of service points per mile;
x8 ‒ total traffic intensity, cars/hour.

Using a multifactorial model made it possible to analytically assess the needs for transport services on central and local roads. Further refinement of regression models was carried out by considering weather and climate factors [7, 10]. Thus, one of the first regression models that takes into account weather and climate factors is presented as follows [11, 12]: 


	,	(7)

where Vi ‒ average speed of the i-th vehicle;
b0 ‒ constant;
b1..., b9 ‒ factor multipliers;
x1 ‒ traffic intensity, cars/hour;
x2 ‒ share of passenger cars in traffic flow, %;
x3 ‒ weather and climate conditions index;
x4 ‒ proportion of vehicles travelling in convoy, %;
x5 ‒ total road curvature;
x6 – proportion of sections with visibility of oncoming vehicles < 460 m, %;
x7 – minimum visibility length on the section, m;
x8 – proportion of the route length in populated areas, %;
x9 – number of intersections.

Subsequent research by V. Suspicin, A. Vasilyev, V. Rasnikov and others allowed us to return to a single-factor regression model of the relationship between speed and traffic intensity in the form [7]: 


	,	(8)

where ks ‒ average seasonal coefficient of estimated speed, which takes into account the duration and effects of meteorological phenomena and their combinations on the condition of the road surface and traffic flow;
Vc – calculated speed of movement;
v ‒ mean square deviation of free traffic flow speed;
‒ share of trucks in traffic flow, share of units;
‒ traffic intensity impact coefficient.

The coefficient of influence of weather and climatic conditions [13] is calculated using the following formula:


	,	(9)

where kes(x) ‒ private coefficients of estimated speed availability under the influence of various meteorological factors, xi;
At ‒ linear operator of duration and effects of meteorological factors, equal to:


	,	(10)

where t1 – duration of action;
t2 ‒ duration of after-effects;
P(x) – probability of the factor's effect.

In single-factor and multi-factor regression models, extrapolation models forecast traffic intensity. (Three models are used for short-term forecasting) [14]:
‒ for forecasts up to 5 years:


	,	(11)

where N0 ‒ annual average daily traffic intensity in the base year, determined based on traffic data, vehicles/day;
P ‒ average growth rate of traffic intensity over the last 10-15 years;
t ‒ ordinal number of the calculation year;

‒ when forecasting for a period of more than 3 years:


	,	(12)

where n ‒ is the number of years for which the intensity is forecast;

‒ when forecasting for a period of up to 5 years:


	,	(13)

where q is the annual traffic intensity growth rate, which is determined based on data from the last 10-15 years.

For medium-term forecasting up to 15 years, an extrapolation model of the following type is used:


	,	(14)

where a, b ‒ coefficients established based on intensity data for the last 10-15 years;
t ‒ serial number of the year for which the forecast is made, Nt.

For long-term forecasting (more than 15 years), the following are used [14, 15]:
‒ extrapolation model of type (12) with verification by equation (14);
‒ expert assessment method;
‒ methods based on the freight and passenger traffic analysis in the area where the road is being built.
Long-term forecasting is the least reliable for several reasons. First, models of type (14) have a rigid structure. However, the nature of models over long periods of time may change. Secondly, regression models do not sufficiently consider the inherent development trends of the factor-function and factor-arguments. Thirdly, these models assume the equivalence of the initial information, i.e. the initial values of traffic intensityN0 [15].
In real practice, however, the behavior of the process is determined mainly by late observations.
This has given rise to so-called discounting when determining model coefficients. Discounting is understood to mean a reduction in the value of early information.
When determining the model coefficients using the least squares method, discounting is performed by introducing certain weighting coefficients βi < 1 into the trend model. The constant coefficients of the model (its parameters) are determined under the condition:


	.	(15)

When smoothing observed data using the moving average method, it is assumed that the weights of observations regarding the depth of the past decline are in accordance with the exponent.
Weighting the output information gives positive results for medium-term forecasts. For long-term forecasts, this proves to be insufficient.
Forecasting speeds based on the development of mathematical models of the movement of individual vehicles and traffic flow (Bezborodova G., Gavrilov E., Gredeskul A., Rente A., Silianov V., Filipov V.) is also insufficient for long-term forecasting. These models are models of the transport system's functioning, not the development [16].
The accuracy of long-term forecasts can be improved by using so-called flexible structure functions, which can change and automatically adapt to the process being studied.
A flexible structure function shows not only the dependence of one factor on another, but also the own development trend of each factor. N. Kulikov proposed the flexible structure function, which looks like this:


	,	(16)

where n is a certain fixed natural number;
x0 ‒ the initial value of the factor-argument at the time interval under consideration;
A0, A1, ... , An ‒ constant actual parameters;
D ‒ Van der Mor determinant of order k;
δj(x-x0) ‒ a function obtained from the determinant by replacing row j with the corresponding functions.


		(17)

Using a flexible structure function to predict operational speeds showed that the error in the medium-term forecast does not exceed 1,4 % [9, 10]. 
To partially compensate for the shortcomings of extrapolation and regression methods, V. Mandrytsia and V. Kraiev proposed using so-called factor-time functions.
In these functions, the factor function is the operating speed, and the arguments are time and transport volume: 


	,	(18)

where Vе – operational speed;
Q – volume of transport;
t ‒ time;
a0, a1, a2 ‒ model coefficients determined by the least squares method.

Practical application of function (18) for developing a medium-term forecast showed that its error is within 0,1 % [16].
Despite a significant increase in forecasting accuracy, this model suffers from the same shortcomings as previous models. Thus, the coefficients included in formula (18) remain undisclosed and rigidly fixed for the entire forecasting period. At the same time, it can be assumed that the coefficient a0 largely depends on the design capabilities of cars, traffic conditions and the psychological characteristics of drivers. Naturally, these factors may change over time. Therefore, model (18) is not applicable for long-term forecasting.
A. Frenkel proposed a solution to this situation. His work considers a method for decomposing the primary trend of the indicator under study into its components associated with changes in the influence of determining factors over time. The main content of his methodology boils down to the following. It is assumed that the influence of the main factors on the indicator under study remains constant over time, but changes in some way.
V = f(xi) is proposed to look for a dynamic model:


	.	(19)

O. Marov and I. Alekseev used this method to forecast transport volumes.
However, presenting regression coefficients as functions of time did not reveal anything about the causes of their changes. In addition, this method made it impossible to assess the random and probabilistic components of the process under study.
Further attempts to solve the problem of predicting speeds were associated with developing models of the movement of individual vehicles and traffic flow as a whole. To predict the speeds of individual vehicles, weighted average speed estimates were used with the following formula:


	,	(20)

where Vi – the speed of an i-type vehicle in traffic flow;
mi ‒ the proportion of i-type vehicles in traffic flow;
M ‒ number of car types.

To estimate the speeds of i-type vehicles, the following motion equation is widely used:


	,	(21)

where Pni ‒ natural forces along the i-th coordinate;
m ‒ vehicle weight;
 ‒ rotational mass coefficients;
xi ‒ i-th coordinate of the system;
t ‒ time.

Natural forces include traction and resistance to motion. Thus, for acceleration:


	,	(22)

where Pp ‒ tractive force;
Pw – air resistance;
Pi ‒ resistance to upward movement;
Pf ‒ rolling resistance.

For braking with the engine not disconnected:


	,	(23)

where Pd ‒ total friction force in the engine, applied to the drive wheels;
Pft ‒ the friction force transmitted to the drive wheels in the vehicle transmission when idling.

For braking with the engine disconnected:


	,	(24)

where Pt ‒ braking force applied to the drive wheels.

For coasting:


	,	(25)

The solution to the equation of motion of a car in terms of speed was obtained by A. Gredeskul.
The traction force in formula (21) was calculated based on the assumption that the car moved with the throttle valve fully open. The deviation of actual speeds from theoretical ones forced us to look for ways to account for the human influence on the degree of throttle opening. A. Ionov proposed an empirical formula:


		(26)

where p ‒ the degree of throttle valve opening;
Ns ‒ specific engine power, hp/t;
L ‒ length of the lift section, m;
i ‒ longitudinal slope, thousandths.

Analysis of the structure of formula (26) shows that, in essence, this formula allows only the longitudinal slope to be considered. The degree of throttle valve opening was a coefficient introduced into the calculation formula for estimating the tractive effort.
Later, E. Gavrilov proposed another way to consider the psychological impact of driving conditions on the vehicle's driving mode. The essence of this approach is to introduce an additive program force (increase in traction or braking force) into the motion equation, which depends on the motivational force:


	,	(27)

where Ppi ‒ i-th program power.

The strength of the program in the average range of human needs is directly proportional to the strength of motivation, therefore:


	,	(28)

where i ‒ proportionality coefficient;
Fi ‒ the strength of the i-th motive for activity.

As a result, according to E. Gavrilov, the equation of motion of a car, subject to the subjective goals of a person, is represented as follows:


	,	(29)

where Vmi ‒ speed limit for the i-th motive of human activity;
i ‒ the rigidity of a person's determination to move at a certain speed Vmi.

The speed limits Vmi depend on the information characteristics of the driver's field of perception, which made it possible to consider the impact of traffic environment factors on humans (and, consequently, on vehicle speed).
The method of accounting for the human factor proposed by E. Gavrilov increased the accuracy of predicted speeds during the design of motorways. As a result, the predicted speeds at the road design stage were close to those observed on the road after construction. However, even in this case, it was not considered that during the road's construction and operation, the vehicle's design, technical, and psychological characteristics of the person driving the car changed. The speed forecast was made for specific vehicles, roads, and individuals without considering their evolution. The forecaster did not consider the evolution of cars, roads, and individuals, which led to significant errors with an increase in the forecast warning time.
Finally, speed prediction models are essentially functioning models. Functioning refers to the processes in a transport system that consistently implement a fixed goal. Long-term forecasting requires consideration of the development of the system, i.e., what happens to the system when its goals change [14, 15].
The so-called evolutionary-probabilistic forecasting method, also proposed by E. Gavrilov, proved more productive. According to this method, a probabilistic model of the evolution of the ‘human-technical means of activity’ system is formed. Then, based on this model, the indicators of the state of the system components are assessed, as well as the probabilities of transitions of the elements from the actual state to the specified state.
With sufficient information, the probabilistic model provides a thoroughly reliable long-term forecast. In addition, this model is straightforward and clear [16, 17].
CONCLUSION
Existing methods of predicting traffic speeds have several shortcomings, the main ones being: the complexity of analysing the causes of speed changes; failure to take into account the impact on traffic speeds of changes in the technical characteristics of vehicles, motorways and human psychological characteristics; multi-stage forecasting, which includes a stage of forecasting traffic intensity and a subsequent stage of forecasting speed, which increases the margin of error in the forecast.
Considering the above, this study aims to develop a method for long-term forecasting of traffic speeds on motorways. To achieve this goal, it is necessary to develop methodologies, algorithms and program texts for personal computers for long-term traffic speed forecasting. The object of the study is the ‘human-vehicle-traffic environment’ system. The study's subject is the evolution and characteristics of the system components. The research methodology includes historical, system analysis, probabilistic and statistical methods.
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