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Abstract. In this paper, the derivation of the equation of nonlinear vibrations and dynamic stability of a viscoelastic orthotropic shell is presented, based on the Kirchhoff–Love model, taking into account the interrelation between temperature fields and deformation fields. In addition, nonlinear integro-differential equations were derived based on the conditions of thermoviscoelasticity and the theory of thin shells, and their complete solution was presented. The effects of thermal and mechanical loads, as well as the curvature of the shell’s middle surface, were analyzed for various boundary and geometric conditions. These results can be applied in engineering, particularly in controlling and predicting the dynamic stability and thermo-mechanical behavior of advanced composite and anisotropic shell structures.
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Introduction 
The advanced composite materials (ferroconcrete, glass-fiber-reinforced plastic (GFRP), carbon-fiber-reinforced polymer (CFRP)) have found wide application in various sectors of engineering. For this reason, the mechanics of composite materials has developed intensively – a branch of mechanics that emerged in response to the demand for materials possessing a predetermined combination of characteristics that are optimal for specific extreme operating conditions. Within the framework of contemporary and complex economic conditions, one of the principal vectors for the accelerated development of the national economy consists of the extensive implementation of polymer materials, various composites, resource-efficient technologies, and design solutions in modern technical apparatus. This is directly related to the reduction of material consumption in building structures. Solving this problem is closely linked to improving structural analysis methods through a more comprehensive consideration of material properties – that is, by making the mathematical model of a solid body closer to reality. One such property is viscoelasticity of the structural material – the relevance of the stress and strain condition of the configuration on time under the influence of weight.
By viscoelastic materials, we mainly understand polymers (e.g., rubber, plastics), biopolymers (e.g., human tissue, cartilage), wood, and even some metals at high temperatures. It should be noted that structural metals at normal temperatures behave like elastic bodies, while at higher (above 200°C) temperatures they exhibit viscoelastic characteristics. At 0 degrees Celsius, plastics have viscoelastic properties, but they are very weak, meaning they are close to elastic bodies. However, at 50 degrees Celsius, their true viscoelastic properties can be observed [1, 2].
Hence, the analysis of deformation and strength characteristics of structural components functioning under severe dynamic conditions, while considering temperature and various influencing factors, is of significant importance. Specifically, the issue of field interaction holds major theoretical and practical value in continuum mechanics, as it focuses on exploring the relationships among mechanical, thermal, electromagnetic, and other types of effects. This is motivated by both applied demands and the inherent principles underlying the advancement of continuum mechanics. 
The consideration of the mutual influence of the mentioned sectors is of profound theoretical significance, as it allows for a penetrating, wider in scope, and an accurate quantitative representation of viscoelastic medium dynamics, reveals a number of qualitatively new effects, and makes it possible to assess the limits of applicability of theories that neglect coupling effects [3-7].
All the aforementioned factors highlight the significance of the present study, which focuses on nonlinear vibration and dynamic stability issues of viscoelastic thin-shell structures, formulated within the framework of the Kirchhoff–Love theory, both considering and neglecting temperature effects, as well as analyzing interrelated and independent mechanical and thermal fields [8-11].
MethodS 









Let the shell be non-uniformly heated through its thickness and along its central surface to a temperature , which varies with time. We align the - axis perpendicular to the central surface toward the curvature center and set the coordinate origin at a point on the median surface. Let the axes  and  coincide with the principal curvature directions of the shell. Denote the shell’s thickness by , and its dimensions along the  and axes by  and , respectively.





 The correlation between temperature , the strain components , , and the stress components  in the case of a plane is expressed as follows
















where  - the elastic moduli of the material in the directions of the axes  and , correspondingly;  - the Poisson’s coefficient in the  direction under tension along the  direction; ,  - the coefficients of  thermal expansion in the directions of the axes and, respectively.
The following relationship holds between the material characteristics:

;


 are integral operators with relaxation kernels :


The strain components, the displacements of the middle layer, and the changes in curvature of the middle surface are interrelated through the following mathematical relationships [11–15]









in here  is the initial deflection.


The strains  for a layer situatedunits away from the central surface, based on hypothesis of straight normals, may be expressed in the form of

.
RESULTS AND DISCUSSION





Let us calculate  - the normal forces,  - the shear force,  and  are moments of bending and  - the moment of torsion
























replacing these expressions in the motion equations [13–15]

[bookmark: _Hlk211752352]	;	(1)

[bookmark: _Hlk211752607]	;	(2)

		

	;	(3)
As a result, the following system of nonlinear integro-differential equations is derived.




































		(4)
where





.
Proceeding in the same manner as in works [3,5,15–17], we derive the governing heat conduction equation for orthotropic materials in the following form




where  are the parameters of heat conductivity in three perpendicular orientations, and is the specific thermal capacity. 
When the right-hand side of this equation is expressed in terms of displacement, it can be written as follows











	.	(5)
Conclusion
The obtained system is quite general.
Let us consider some particular cases.
1. In the absence of inertial effects, the dynamic process can be simplified. Under this assumption, equations (1)–(3) take a reduced form. The justification for neglecting inertial loads is supported by the findings reported in [5]. The corresponding simplified system is therefore omitted here.



2. For the case where  and , with  denoting the radius of curvature of the middle surface, the equations correspond to those describing a circular cylindrical shell.

3. If , the obtained relations describe a spherical shell.
The systems of equations presented in (4) and (5) are mutually connected. Hence, this mathematical model represents the deformation behavior of a viscoelastic orthotropic shell under non-stationary mechanical and thermal loads, as well as the reciprocal phenomenon – the modification of its temperature field caused by deformation. This type of formulation is referred to as a coupled dynamic thermo-viscoelasticity problem.
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Abstract.


 


In this paper, the derivation of the equation of nonlinear 


vibrations and dynamic stability of a viscoelastic 


orthotropic shell is presented, based on the Kirchhoff


–


Love model, taking into account the interrelation between 


temperature fields and deformation fields.


 


In addition, nonlinear integro


-


differential equat


ions were derived based on the 


conditions of thermoviscoelasticity and the theory of thin shells, and their complete solution was presented. The effects 


of thermal and mechanical loads, as well as the curvature of the shell’s middle surface, were analyzed 


for various 


boundary and geometric conditions. These results can be applied in engineering, particularly in controlling and predicting 


the dynamic stability and thermo


-


mechanical behavior of advanced composite and anisotropic shell structures.


 


K


eywords


:


 


V


i


scoelastic shell, thermo


-


mechanical coupling, nonlinear vibrations, dynamic stability, Kirchhoff


–


love 


model, orthotropic materials, integro


-


differential equations, heat conduction


 


INTRODUCTION 


 


The


 


advanced


 


composite materials (


ferroconcrete, glass


-


fiber


-


r


einforced plastic (GFRP), carbon


-


fiber


-


reinforced 


polymer (CFRP)


) have found wide application in


 


v


arious sectors


 


of engineering. 


For this reason


, the mechanics of 


composite materials has developed intensively 


–


 


a branch of mechanics that emerged in 


response to the demand for 


materials possessing a predetermined combination of


 


c


haracteristics that are optimal for specific extreme operating 


conditions


.


 


Within the framework of contemporary and complex economic conditions, one of the principal vectors 


fo


r the accelerated development of the national economy consists of the extensive implementation of polymer 


materials, various composites, resource


-


efficient technologies, and design solutions in modern technical apparatus.


 


This is directly related to the re


duction of material consumption in building structures. Solving this problem is 


closely linked to improving structural analysis methods through a more comprehensive consideration of material 


properties


 


–


 


that


 


is, by making the mathematical model of a solid


 


body closer to reality. One such property is 


viscoelasticity of the structural material


 


–


 


the


 


relevance 


of the stress and strain condition of the configuration


 


on 


time under the influence of 


weight


.


 


By viscoelastic materials, we mainly understand polymers


 


(e.g., rubber, plastics), biopolymers (e.g., human 


tissue, cartilage), wood, and even some metals at high temperatures.


 


It should be noted that structural metals at 


normal temperatures behave like elastic bodies, while at higher (above 200°C) temperatures


 


they


 


exhibit viscoelastic 


characteristics


. 


At 0 degrees Celsius, plastics have viscoelastic properties, but they are very weak, meaning they are 


close to elastic bodies. However, at 50 degrees Celsius, their true viscoela


stic properties can be observed 


[1


, 2


].


 


Hence, the analysis of deformation and strength characteristics of structural components functioning under 


severe dynamic conditions, while considering temperature and various influencing factors, is of significant 


importance. Specifically, the issue


 


of field interaction holds major theoretical and practical value in continuum 




Mathematical Model of Dynamic Problems of a Viscoelastic  Shell Considering the Interrelation of Mechanical and  Thermal Fields   Ummatali Akbarov 1 ,  Jalolxon   Nuritdinov 1,   a ) ,  Abdugaffar Tashxodjayev 2 ,                   Maftuna Yakubjanova 1   1 Kokand State  University ,  Kokand 100700, Uzbekistan   2 Kokand University, Kokand 100700, Uzbekistan      a) Corresponding   author:  nuritdinovjt@gmail.com     Abstract.   In this paper, the derivation of the equation of nonlinear  vibrations and dynamic stability of a viscoelastic  orthotropic shell is presented, based on the Kirchhoff – Love model, taking into account the interrelation between  temperature fields and deformation fields.   In addition, nonlinear integro - differential equat ions were derived based on the  conditions of thermoviscoelasticity and the theory of thin shells, and their complete solution was presented. The effects  of thermal and mechanical loads, as well as the curvature of the shell’s middle surface, were analyzed  for various  boundary and geometric conditions. These results can be applied in engineering, particularly in controlling and predicting  the dynamic stability and thermo - mechanical behavior of advanced composite and anisotropic shell structures.   K eywords :   V i scoelastic shell, thermo - mechanical coupling, nonlinear vibrations, dynamic stability, Kirchhoff – love  model, orthotropic materials, integro - differential equations, heat conduction   INTRODUCTION    The   advanced   composite materials ( ferroconcrete, glass - fiber - r einforced plastic (GFRP), carbon - fiber - reinforced  polymer (CFRP) ) have found wide application in   v arious sectors   of engineering.  For this reason , the mechanics of  composite materials has developed intensively  –   a branch of mechanics that emerged in  response to the demand for  materials possessing a predetermined combination of   c haracteristics that are optimal for specific extreme operating  conditions .   Within the framework of contemporary and complex economic conditions, one of the principal vectors  fo r the accelerated development of the national economy consists of the extensive implementation of polymer  materials, various composites, resource - efficient technologies, and design solutions in modern technical apparatus.   This is directly related to the re duction of material consumption in building structures. Solving this problem is  closely linked to improving structural analysis methods through a more comprehensive consideration of material  properties   –   that   is, by making the mathematical model of a solid   body closer to reality. One such property is  viscoelasticity of the structural material   –   the   relevance  of the stress and strain condition of the configuration   on  time under the influence of  weight .   By viscoelastic materials, we mainly understand polymers   (e.g., rubber, plastics), biopolymers (e.g., human  tissue, cartilage), wood, and even some metals at high temperatures.   It should be noted that structural metals at  normal temperatures behave like elastic bodies, while at higher (above 200°C) temperatures   they   exhibit viscoelastic  characteristics .  At 0 degrees Celsius, plastics have viscoelastic properties, but they are very weak, meaning they are  close to elastic bodies. However, at 50 degrees Celsius, their true viscoela stic properties can be observed  [1 , 2 ].   Hence, the analysis of deformation and strength characteristics of structural components functioning under  severe dynamic conditions, while considering temperature and various influencing factors, is of significant  importance. Specifically, the issue   of field interaction holds major theoretical and practical value in continuum 

