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Abstract: This paper introduces a new mixture of the Komal distribution with a single parameter β and derives key statistical 

properties, such as the survival function, probability density function, hazard function, and cumulative distribution function. In 

addition, the study proposes a new hybrid algorithm (PSOMO) by combining the Particle Swarm Optimization (PSO) algorithm 

with the Monkey (MO) algorithm to estimate the survival function based on the two distribution parameters. The simulation was 

used to compare the performance of the proposed algorithm with the standard algorithm (PSO and MO). The results showed that 

the proposed algorithm (PSOMO) achieves near perfect accuracy under simulated conditions for the survival function while 

achieving a lower mean square error than other estimation methods. 
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INTRODUCTION 

      Recently, survival analysis has gained significant importance in various fields of science. Survival analysis 

refers to the study of the probability of events associated with failure or time of death after treatment [1]. For many 

years, statisticians have been interested in estimating and analyzing survival functions, as these functions are 

essential for understanding the nature of data related to time of failure or death [2-7]. Statistical distributions are 

vital tools in survival analysis, as they help accurately describe and interpret a data set. Over the past decades, many 

researchers have focused on developing more flexible probability distributions to accommodate the diversity and 

complexity of data [7-11]. Therefore, several more flexible distributions have recently been developed using 

innovative data analysis techniques. .[15] used an exponential Weibull distribution for the model of maximum and 

significant wave heights. [16] presented the Kumaraswamy-Weibull distribution, while [9] presented the Poisson-

Weibull distribution and [17] proposed an extension of the Weibull distribution. [18] defined a three-parameter 

model for the lifetime, the so-called Weibull-Rayleigh distribution.  [19] derived a Bayesian estimate of the Weibull 

mixture. [20] developed a new generalized class of distributions, the Burr-Weibull Power Series.  [21] introduced 

one-parameter Lindley and Weibull distributions. [22] studied reliability analysis for mixed Weibull. With data's 

increasing complexity and models' nonlinearity, estimating distributions' parameters has become a major challenge 

[23]. For this reason, researchers have turned to using meta-heuristic algorithms that have proven effective in 

improving parameter estimation. For example, [24] used the log-likelihood maximization genetic algorithm (GA) 

to estimate the mixture's normal distribution parameters. [25] Also, it relied on the harmony search algorithm to 

estimate the parameters of probability distributions. [26] proposed the Jack-Knife algorithm to estimate the 

parameters of the mixture Komal distribution, reflecting the growing trend towards using modern techniques to 

improve the accuracy of estimates. Despite the successful use of metaheuristic algorithms in attacking complex 

machine scheduling problems, we cannot adopt one algorithm for all real-world problems [27-29].  
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we cannot adopt one algorithm for all real-world problems, since, despite the successful use of metaheuristic 

algorithms in attacking complex  problems [30, 31].  Accordingly, this paper aims to present a new mixture distribution 

and estimate its parameters based on the survival function using a new hybrid meta-heuristic algorithm. 

 

MIXTURE OF KOMAL DISTRIBUTION  

      Shanker (2023) introduced a one parameter lifetime distribution named the Komal distribution, having a 

probability density function (pdf) and a cumulative distribution function (cdf) 
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A r.v. 𝑥 is considered to have a finite mixture of Komal distribution (MKD) as its PDF and CDF can be written as, 

respectively: 
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The survival and  hazard function of the combined is given as: 
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        FIGURE1.  CDF for the MKD 

 
FIGURE 2.  PDF for the MKD 

 



 
FIGURE3.Survival function for MKD 

 

                                             

FIGURE 4. Hazard function for the MKD 

     HYBRID META-HEURISTIC ALGORITHMS 

      Many algorithms are used in optimization processes, and each algorithm has advantages and disadvantages that 

affect its performance in solving different problems. While some algorithms perform highly in a particular class of 

issues, they may be less effective when applied to other problems. This difference is not limited to problem classes 

but extends to specific cases within a single problem. In light of this, modern heuristics focus on two main components: 

exploration and exploitation. Exploration aims to search for new solutions in the solution space, while exploitation 

focuses on improving the discovered solutions to reach the optimal one. A new hybrid algorithm, PSOMO, has been 

developed to balance these two components, combining the Particle Swarm Optimization Algorithm (PSO) and the 

Monkey Algorithm (MO). The PSOMO algorithm is designed to estimate the parameters of a mixture of distributions 

based on the survival function. This approach improves computational efficiency, as diversity in the search is essential 

to avoid falling into local solutions, especially when the algorithm converges towards optimal solutions. Steps of the 

PSOMO algorithm: Generate initial solutions: A random set of solutions is generated as an initial step. Implement 

MO algorithm: It improves exploration by moving solutions towards the best solutions based on light intensity. 

Implement the PSO: It expands the search by replacing some solutions with new solutions according to the nesting 

strategy. Evaluate solutions: The updated solutions are evaluated using the objective function associated with the 

likelihood function. 
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The PSOMO algorithm updates solutions by combining the strengths of PSO and MO to balance exploration and 

exploitation. The stopping criterion was primarily a fixed number of iterations, determined through preliminary 

experiments that showed stable results beyond a certain point; in some cases, relative changes in the objective function 

were also considered. Parameter tuning for both PSO and MO components was conducted experimentally by testing 

various values (e.g., swarm size, inertia, moves), and selecting those that minimized the estimation error while 

maintaining stability. 

SIMULATION STUDY 

     The effectiveness of the proposed method for parameter estimation was evaluated using simulation, where 1000 

iterations were performed to generate each simulation case. To verify the effect of sample size on performance, 



different sample sizes were tested: 15, 25, 50, 75, 100, and 120. The performance was simulated based on the mean 

square error (MSE) criteria according to the following steps: 

Step 1: Algorithm parameter initialization, all parameters of the PSO, MO, and hybrid algorithm (PSOMO)are 

adjusted.  

Step 2: Generating Random Samples from a continuous uniform distribution on the interval (0,1). These samples are 

then transformed into samples that follow the Komal distribution using the cumulative distribution function as follows: 

𝐹(𝑥, 𝛽1, 𝛽2) = 𝑈 to find 𝑥, The numerical method (Newton-Raphson) was used. Then, define a vector that is used for 

all required parameters, such as Ӽ = [ 𝛽1, 𝛽2, 𝛼 ], and generates N solutions for Ӽ. 

Step 3: Recall the S from equation (5). 

Step 4: The optimal value of 𝑠̂ is determined using the PSO, MO, and PSOMO algorithms. 

Step 5: Calculating the mean squared error (MSE). Based on L=1000 trials, the MSE is calculated as follows:  MSE =

(
1

L
∑ (Ŝi −  S)

2L
i=1 ). 

PERFORMANCE COMPARISON  

      To determine the best method for the proposed estimation algorithms (PSO, MO, and PSOMO algorithms) of the 

mixture Komal Distribution, six sample sets (15, 25, 50, 75, 100, and 120) were used to estimate the Survival function 

based on parameters (β_1, β_2,α) of distributions. A simulation study was used to compare the proposed algorithms. 

Then, the simulation results for all methods, as shown in tables (1-3), depend on the MSE Survival analyses. The 

hybrid algorithm consistently provides lower values than MA and PSO, suggesting better optimization performance, 

especially at higher iterations. MA shows relatively stable values but lacks the precision of PSO or Hybrid methods. 

Hybrid tends to outperform MA and PSO in some cases (e.g., at n=25). This suggests the hybrid approach leverages 

the strengths of both methods effectively. Scalability: As n increases, the differences between the methods diminish 

slightly, but PSOMO still shows superior performance, particularly for n=75. PSO’s performance increases with n, 

indicating potential robustness for more significant problems.  

 

TABLE 1. MSR values of 𝑠̂ when 𝛽1 = 1.5 , 𝛽2 = 2.0 and 𝛼 = 0.5 

n PSO MA   Hybrid         

15 4.9841e-06 0.0059582 2.9806e-08 

25 5.9321e-07   0.036868 6.3533e-08 

50 2.1238e-08   0.013567 1.924e-07 

75 7.0756e-0 0.027343 1.6455e-07 

100 9.0393e-06   0.020765 4.8399e-07 

120 1.6213e-07 0.023684 4.7027e-08 
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FIGURE 5a,b,c,d,e,f.  Comparison of Survival Function for Different Sample Sizes 



TABLE 2,  MSR values of 𝑠̂when 𝛽1 = 2 , 𝛽1 = 3.5 , 𝑎𝑛𝑑 𝛼 = 0.5 
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      FIGURE 6a,b,c,d,e.  Comparison of Survival Function for Different Sample Sizes 
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FIGURE 7.  Comparison of Survival Function for Different Sample Sizes 

                                                                                

n PSO MA Hybrid 

15 3.4863e-07 0.0072613 1.4298e-07   

25 6.0923e-08 0.0080372 5.2167e-09 

50 1.2073e-07 0.011118 4.297e-07 

75 5.4453e-07 0.0099121 1.0451e-07 

100 1.3654e-07 0.0068967 4.6841e-08 

120 9.6192e-07 0.0078046 1.1269e-07 



TABLE 3. MSR values of 𝑠̂when 𝛽1 = 1 , 𝛽1 = 2 , 𝑎𝑛𝑑 𝛼 = 0.5 

n PSO MA Hybrid 

15 5.9779e-07 0.026817 8.779e-07 

25 4.4703e-06 0.037547 1.7115e-06 

50 8.3128e-07 0.045056 1.9904e-07 

75 3.3542e-07 0.043468 3.1097e-08 

100 1.4456e-07 0.051461 8.2879e-08 

120 3.0152e-05 0.039987 2.2119e-06 

                      

CONCLUSION 

       This paper introduced a new statistical model based on the Komal distribution. Several statistical properties of 

the distribution are derived, including the survival function, probability density function, hazard function, cumulative 

distribution function, moments of rank, mean, variance, median, moment-generating function, and mode. In addition, 

the study proposed a new hybrid algorithm (PSOMO), which was developed by integrating the particle swarm 

optimization algorithm and the monkey algorithm. This algorithm is designed to enhance the estimation accuracy of 

the survival function using distribution parameters, thereby improving it over traditional methods. The simulation 

results showed that the hybrid algorithm (PSOMO) is accurate and significantly reduces the mean square error, making 

it a more efficient and effective option for estimating these functions.  Despite these encouraging results, some 

limitations are worth noting, such as the potential difficulty in scaling up to large data sets and the dependence on 

assumptions about the shape of the distribution used. Future research suggests testing the algorithm using real data 

from medical or industrial applications, as well as comparing it with other probability distributions to verify its 

flexibility and accuracy in diverse contexts. 
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