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Abstract: This paper introduces a new mixture of the Komal distribution with a single parameter  and derives key statistical
properties, such as the survival function, probability density function, hazard function, and cumulative distribution function. In
addition, the study proposes a new hybrid algorithm (PSOMO) by combining the Particle Swarm Optimization (PSO) algorithm
with the Monkey (MO) algorithm to estimate the survival function based on the two distribution parameters. The simulation was
used to compare the performance of the proposed algorithm with the standard algorithm (PSO and MO). The results showed that
the proposed algorithm (PSOMO) achieves near perfect accuracy under simulated conditions for the survival function while
achieving a lower mean square error than other estimation methods.
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INTRODUCTION

Recently, survival analysis has gained significant importance in various fields of science. Survival analysis
refers to the study of the probability of events associated with failure or time of death after treatment [1]. For many
years, statisticians have been interested in estimating and analyzing survival functions, as these functions are
essential for understanding the nature of data related to time of failure or death [2-7]. Statistical distributions are
vital tools in survival analysis, as they help accurately describe and interpret a data set. Over the past decades, many
researchers have focused on developing more flexible probability distributions to accommodate the diversity and
complexity of data [7-11]. Therefore, several more flexible distributions have recently been developed using
innovative data analysis techniques. .[15] used an exponential Weibull distribution for the model of maximum and
significant wave heights. [16] presented the Kumaraswamy-Weibull distribution, while [9] presented the Poisson-
Weibull distribution and [17] proposed an extension of the Weibull distribution. [18] defined a three-parameter
model for the lifetime, the so-called Weibull-Rayleigh distribution. [19] derived a Bayesian estimate of the Weibull
mixture. [20] developed a new generalized class of distributions, the Burr-Weibull Power Series. [21] introduced
one-parameter Lindley and Weibull distributions. [22] studied reliability analysis for mixed Weibull. With data's
increasing complexity and models' nonlinearity, estimating distributions' parameters has become a major challenge
[23]. For this reason, researchers have turned to using meta-heuristic algorithms that have proven effective in
improving parameter estimation. For example, [24] used the log-likelihood maximization genetic algorithm (GA)
to estimate the mixture's normal distribution parameters. [25] Also, it relied on the harmony search algorithm to
estimate the parameters of probability distributions. [26] proposed the Jack-Knife algorithm to estimate the
parameters of the mixture Komal distribution, reflecting the growing trend towards using modern techniques to
improve the accuracy of estimates. Despite the successful use of metaheuristic algorithms in attacking complex
machine scheduling problems, we cannot adopt one algorithm for all real-world problems [27-29].
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we cannot adopt one algorithm for all real-world problems, since, despite the successful use of metaheuristic
algorithms in attacking complex problems [30, 31]. Accordingly, this paper aims to present a new mixture distribution
and estimate its parameters based on the survival function using a new hybrid meta-heuristic algorithm.

MIXTURE OF KOMAL DISTRIBUTION

Shanker (2023) introduced a one parameter lifetime distribution named the Komal distribution, having a
probability density function (pdf) and a cumulative distribution function (cdf)
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A r.v. x is considered to have a finite mixture of Komal distribution (MKD) as its PDF and CDF can be written as,
respectively:
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FIGUREI1. CDF for the MKD
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FIGURE 2. PDF for the MKD
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FIGURE 4. Hazard function for the MKD
HYBRID META-HEURISTIC ALGORITHMS

Many algorithms are used in optimization processes, and each algorithm has advantages and disadvantages that
affect its performance in solving different problems. While some algorithms perform highly in a particular class of
issues, they may be less effective when applied to other problems. This difference is not limited to problem classes
but extends to specific cases within a single problem. In light of this, modern heuristics focus on two main components:
exploration and exploitation. Exploration aims to search for new solutions in the solution space, while exploitation
focuses on improving the discovered solutions to reach the optimal one. A new hybrid algorithm, PSOMO, has been
developed to balance these two components, combining the Particle Swarm Optimization Algorithm (PSO) and the
Monkey Algorithm (MO). The PSOMO algorithm is designed to estimate the parameters of a mixture of distributions
based on the survival function. This approach improves computational efficiency, as diversity in the search is essential
to avoid falling into local solutions, especially when the algorithm converges towards optimal solutions. Steps of the
PSOMO algorithm: Generate initial solutions: A random set of solutions is generated as an initial step. Implement
MO algorithm: It improves exploration by moving solutions towards the best solutions based on light intensity.
Implement the PSO: It expands the search by replacing some solutions with new solutions according to the nesting
strategy. Evaluate solutions: The updated solutions are evaluated using the objective function associated with the
likelihood function
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The PSOMO algorlthm updates solutions by combining the strengths of PSO and MO to balance exploration and
exploitation. The stopping criterion was primarily a fixed number of iterations, determined through preliminary
experiments that showed stable results beyond a certain point; in some cases, relative changes in the objective function
were also considered. Parameter tuning for both PSO and MO components was conducted experimentally by testing
various values (e.g., swarm size, inertia, moves), and selecting those that minimized the estimation error while
maintaining stability.

(1 + B, + x)eF2h)

SIMULATION STUDY

The effectiveness of the proposed method for parameter estimation was evaluated using simulation, where 1000
iterations were performed to generate each simulation case. To verify the effect of sample size on performance,



different sample sizes were tested: 15, 25, 50, 75, 100, and 120. The performance was simulated based on the mean
square error (MSE) criteria according to the following steps:

Step 1: Algorithm parameter initialization, all parameters of the PSO, MO, and hybrid algorithm (PSOMO)are
adjusted.

Step 2: Generating Random Samples from a continuous uniform distribution on the interval (0,1). These samples are
then transformed into samples that follow the Komal distribution using the cumulative distribution function as follows:
F(x, By, B2) = U to find x, The numerical method (Newton-Raphson) was used. Then, define a vector that is used for
all required parameters, such as X =[ 1, B,, « ], and generates N solutions for X.

Step 3: Recall the S from equation (5).

Step 4: The optimal value of § is determined using the PSO, MO, and PSOMO algorithms.

Step 5: Calculating the mean squared error (MSE). Based on L=1000 trials, the MSE is calculated as follows: MSE =

(zha(i- 9)°).
PERFORMANCE COMPARISON

To determine the best method for the proposed estimation algorithms (PSO, MO, and PSOMO algorithms) of the
mixture Komal Distribution, six sample sets (15, 25, 50, 75, 100, and 120) were used to estimate the Survival function
based on parameters (§_1, B_2,a) of distributions. A simulation study was used to compare the proposed algorithms.
Then, the simulation results for all methods, as shown in tables (1-3), depend on the MSE Survival analyses. The
hybrid algorithm consistently provides lower values than MA and PSO, suggesting better optimization performance,
especially at higher iterations. MA shows relatively stable values but lacks the precision of PSO or Hybrid methods.
Hybrid tends to outperform MA and PSO in some cases (e.g., at n=25). This suggests the hybrid approach leverages
the strengths of both methods effectively. Scalability: As n increases, the differences between the methods diminish
slightly, but PSOMO still shows superior performance, particularly for n=75. PSO’s performance increases with n,
indicating potential robustness for more significant problems.

TABLE 1. MSR values of § when ; = 1.5,, =2.0anda = 0.5

n PSO MA Hybrid
15 4.9841e-06 0.0059582 2.9806e-08
25 5.9321e-07 0.036868 6.3533e-08
50 2.1238e-08 0.013567 1.924e-07
75 7.0756e-0 0.027343 1.6455e-07
100 9.0393e-06 0.020765 4.8399e-07
120 1.6213e-07 0.023684 4.7027e-08
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FIGURE 5a,b,c,d,e,f. Comparison of Survival Function for Different Sample Sizes



TABLE 2, MSR values of Swhen ; = 2,8, = 3.5,and a = 0.5

n PSO MA Hybrid
15 3.4863¢-07 0.0072613 1.4298e-07
25 6.0923¢-08 0.0080372 5.2167¢-09
50 1.2073e-07 0.011118 4.297e-07
75 5.4453e-07 0.0099121 1.0451e-07
100 1.3654e-07 0.0068967 4.6841e-08
120 9.6192e-07 0.0078046 1.1269¢-07
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FIGURE 6a,b,c,d,e. Comparison of Survival Function for Different Sample Sizes
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FIGURE 7. Comparison of Survival Function for Different Sample Sizes



TABLE 3. MSR values of Swhen 8y = 1,8, =2,anda = 0.5

n PSO MA Hybrid
15 5.9779¢-07 0.026817 8.779e-07
25 4.4703e-06 0.037547 1.7115e-06
50 8.3128e-07 0.045056 1.9904e-07
75 3.3542¢-07 0.043468 3.1097e-08
100 1.4456e-07 0.051461 8.2879¢-08
120 3.0152¢-05 0.039987 2.2119¢-06

CONCLUSION

This paper introduced a new statistical model based on the Komal distribution. Several statistical properties of
the distribution are derived, including the survival function, probability density function, hazard function, cumulative
distribution function, moments of rank, mean, variance, median, moment-generating function, and mode. In addition,
the study proposed a new hybrid algorithm (PSOMO), which was developed by integrating the particle swarm
optimization algorithm and the monkey algorithm. This algorithm is designed to enhance the estimation accuracy of
the survival function using distribution parameters, thereby improving it over traditional methods. The simulation
results showed that the hybrid algorithm (PSOMO) is accurate and significantly reduces the mean square error, making
it a more efficient and effective option for estimating these functions. Despite these encouraging results, some
limitations are worth noting, such as the potential difficulty in scaling up to large data sets and the dependence on
assumptions about the shape of the distribution used. Future research suggests testing the algorithm using real data
from medical or industrial applications, as well as comparing it with other probability distributions to verify its
flexibility and accuracy in diverse contexts.
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