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Abstract. Recently, aggregate production planning has become increasingly important and complex. Therefore, this paper
introduces a new multi-objective model for aggregate production planning that aims to minimize production costs, total
production time, changeover costs, and product delivery delays. Additionally, a new hybrid metaheuristic algorithm
(WAFOA) is proposed, which combines the Whale Optimization Algorithm and the Fly Optimization Algorithm to solve
a multi-objective aggregate production planning problem. Three standard metaheuristic algorithms (Genetic, Whale
Optimization, and Fly Optimization) are also tested with varying sample sizes for comparison. The results showed that the
hybrid metaheuristic algorithm produced the best outcomes.
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INTRODUCTION

Aggregate Production Planning (APP) problems are important in many manufacturing companies. Managers
recognize that personnel and production decisions, which adapt to changing client needs, can have a significant impact
on the company's profitability [1]. APP is described as planning production quantities and schedules for a medium-
term timeframe of 3 to 18 months [2]. During this stage, the amount of production needed to meet expected demand
is figured out. APP tries to establish total production levels to suit future variable or unknown demand in each product
category [3]. It also considers policy and decision-making factors such as hiring, overtime, layoffs, backorders,
subcontracting, and inventory management [4]. Since the 1950s, different APP models with varying levels of
complexity have been developed. As noted by [5], traditional methods for addressing these problems can be
categorized into linear decision rules [6], linear programming [7-9], transportation methods [10], management
coefficient approaches [11], search decision rules [12], and simulation [13]. In recent decades, APP problems have
become highly complex and NP-hard. Thus, the researchers have focused on solving these complicated problems
using metaheuristic algorithms [14-20]. Although metaheuristic algorithms have effectively been used to address
complicated real-world APP problems, no single solution is effective for all situations due to the no-free lunch theorem
[21]. So, modern ideas like self-adaptive modification of algorithms or hybrid algorithms that help you choose the
right method try to get around the hidden challenges that metaheuristics have when they try to solve real APP problems
. Several researchers have utilized metaheuristic algorithms, such as a hybrid model of genetic algorithm (GA) and
ant colony optimization, to solve the APP of long-term policies in industries [22]. Additionally, a mixed-integer linear
programming model was created for a generalized two-phase APP method [23]. After that, the genetic algorithm and
tabu search methods were used to work on the APP model. In [24], To solve the integer-based linear programming
model for APP problem sets, updated particle swarm optimization (PSO) strategies were suggested. Also, the
assumption is that imprecise deterministic parametric values can give outcomes that are neither useful or practical
[25- 28]. Most models for solving APP problems were focused on individual objectives and are incompatible with
actual production planning systems. As well as, these methods mainly concentrate on solution algorithms without
considering comprehensive, generalized models, making them incompatible with real production systems. As a result,
no generalized and comprehensive models have been developed to adapt to actual production environments. The
present study proposed a new hybrid algorithm (WOFOA) for solving the multi-objective APP problem. The
remainder of this work is organized as follows: the mathematical programming model is presented first, followed by



the proposed Hybrid Algorithm. Next, the computational study and results are discussed, and finally, the conclusion
along with potential directions for future work are provided.

THE MATHEMATICAL MODEL

A mathematical model of a Multi-Objective Linear Programming (MOLP) for INAPSAM was proposed.

Notational definitions
w; — Regular time labor cost per hour at each period t.

M, — labor hours of regular time at each period t.

W, — Work force sizes of worker type j at period t.

0; = Over time labor cost per hour at each period t.

0, — Namber of over time hours of worker at period t.

h; — Hiring and training cost per worker of period t.

H; — Workforce hired at the beginning of period t.

f: — Layoff cost per worker of period t.

F, — Workforce laid off at beginning of period t.

in: — Inventory holding cost per unit of product at each period t.
I, — Units of inventory of product at the end of period t.

b,; — Backlog cost per unit of product at each period t. s
Cnt — Unit material cost.

Pne — Units of product produced at period t.

Spt — Subcontracting cost per unit of product.

Snt — Units of product subcontracted at period t.

Objective functions
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Constraints
Inventory level constraint:
Pne T Ine-1) = Ine + Snt — Bp(t-1) + Bt = Dy, VN, VL. (2)
Capacity constraint:
N
Z(AR X P.) — (M, Xx W,) — 0, <0 ,Vt. 3)
n=1
Workforce, hiring, and layoff constraints:
Ft_Ht+Wt_Wt—1=0 vt. (4)
Non-negativity constraints:
Pot, Ine, By Sue, O, He, Fe, W, =0 vn,vt.54.2.1 (5)

PROPOSED HYBRID ALGORITHM

Hybrid metaheuristic algorithms are effective solution techniques. They are created by merging two or more
algorithms to increase the total search efficiency. A practical algorithm must exhaustively explore the entire search
space and refine its search locally to find the optimal or near-optimal solution [29-35]. Accordingly, this study
proposes a hybrid algorithm that balances exploration and exploitation to improve the speed and quality of the search



by integrating the Fly Optimization Algorithm with the whale algorithm. The steps of the hybrid algorithm are outlined
as follows:
The Steps of Implementation for the Hybrid Algorithm:
Step 1. Initialization
Initialize the population size n, the number of decision variables d, and the limits of the search space[lb, ub].
Generate an initial population Xi € R% , i=1,2,..., n uniformly at random within the search space.
Calculate the fitness of all members concerning the objective function.
Find the best solution X* based on the minimum objective value.
Step 2. Whale Optimization Phase (Global Search)
It is run for almost 60% of the total number of iterations. It is based on humpback whales' bubble-net hunting strategy,
and comprises two main behaviors:
e  Encircling the Prey: Updating the position of each whale by:
A+ =X -4.1C.X =X ®|
Where 4" = 2a. n—a, C =2 1, , adecrease linearly from 2 to 0 over iterations, r; ,7, €[0,1] are random vectors.
e  Spiral Updating: Updating the position with 50% probability using a spiral equation:
X(@+1) =X =X @®)]e.cos @r)|C + X*
le [-1,1] is a random number.
Step 3. Fly Optimization Phase (Local Search)
After the WOA phase, FOA is executed for 40% of all iterations to enhance the best solution. FOA generates new
candidate solutions around the current best solution using: X new = X +A
A is a small perturbation vector (usually Gaussian or uniform noise).
The fitness of all generated solutions is evaluated.
The best one among them replaces X ifit improves the objective value.
Step 4. Selection and Comparison
Compare the best solutions obtained from both WOA and FOA phases.
The overall best solution Xj,p,iq = arg min{f(Xy04),f(Xro4)}
Step 5: Local Fine-Tuning (Post-Optimization Adjustment)
Apply a local perturbation procedure for a fixed number of iterations about the hybrid solution:
Ytrial = Yhybrid + N(0,0)
If any perturbed solution improves the objective function, it is adopted as the new best.
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Y

Initialize parameters: n, d, Ib, ub, max iter

M

Generate initial population and evaluate fitness

Y

Find the best solution X*

M

Y

FOA Phase (40% iters): Generate near X*, Evaluate and update

M

Local fine tuning (20 trials), Gaussian perturbation

Y

Return best solution

M

| WOA Phase (60% iters): Encircle or Spiral, Update best |
| End |

FIGURE 1. Flowchart of the WOFOA



COMPUTATIONAL STUDY AND RESULT

To verify and evaluate the performance of the WOFOA in solving the multi-objective aggregate production
planning, simulation is used to analyze the effectiveness of the proposed algorithm. A variety of problems with
medium and large sizes (10, 20, 30,40,75, 100, 150, 200, 300, 500, and 700 jobs). Then, the results also compare the
performance of the hybrid algorithm (WOFOA) with three metaheuristic algorithms (genetic, whale, and Fly
Optimization). The algorithms have been implemented 1000 times for every problem. The average time and the total
costs for each objective of WOFOA, GA, WA, and FOA are depicted in Table 1. This table describes the outcomes
of optimization algorithms, including Genetic, Whale, Hybrid (WOFOA), and Fly Optimization. The data shows the
results of objective functions and execution time for various n values. This evaluation focused on two main criteria:
solution quality (obj value) and execution efficiency (time). Regarding solution quality, the hybrid algorithm achieved
the lowest obj values at all data sizes, indicating its strong ability to approach, and in some cases surpass, optimal
solutions. For instance, at n = 150, the hybrid algorithm recorded an objective function value of approximately 2216.8,
compared to: GA = 16023, WOA = 17533, FOA = 13802. At n = 750, the hybrid further improved its performance to
achieve 11142, while the other algorithms recorded: GA = 1.1582e+, WOA = 86498, FOA = 1.1094e+. These
significant differences highlight the hybrid algorithm's capability to find better and more stable solutions as data size
and problem complexity increase.

TABLE 1. The outcome of GA, WA, FOA, and WAFOA depend on MSE.

n GA WOA Fly Hybrid
10 obj 792 1106.9 711.6 97.219
Time 0.0768 0.0338 0.029 0.0221

20 obj 1230 1798.1 1127.1 165.11
Time 0.0029 0.0192 0.0266 0.0238
30 obj 2286 3350.9 2002.2 413.39
Time 0.0901 0.0179 0.0192 0.0118
40 obj 29242 4258.8 2712.6 426.48
Time 0.0488 0.0177 0.0162 0.0105

75 obj 6446.8 7960.8 6105.4 1033.1
Time 0.9673 0.0187 0.0225 0.0118
100 obj 9757.3 11097 7669.6 1508.6
Time 0.0602 0.0215 0.0239 0.0135
150 obj 16023 17533 13802 2216.8
Time 0.0958 0.0509 0.0448 0.0336

200 obj 23460 22303 20438 2829
Time 0.1192 0.0236 0.0461 0.0264
300 obj 40871 35486 36026 4535.4
Time 0.0923 0.0324 0.0441 0.0264
500 obj 72065 55783 65222 7259.6
Time 0.1527 0.0639 0.0857 0.0371

750 obj 1.1582e¢ 86498 1.1094e 11142
Time 0.1609 0.0535 0.0762 0.0405

In terms of execution time, the hybrid algorithm maintained excellent performance, often ranking as the fastest or
second-fastest algorithm. For example: At n = 10, Hybrid was faster at 0.0221 seconds compared to GA (0.0768),
WOA (0,0338), and Fly (0.029). At n = 750, Hybrid achieved an execution time of only 0.0405 seconds, while GA
took 0.1609 seconds, WOA took 0.0530 seconds, and Fly took 0.0762 seconds. This excellent balance between
accuracy and computational speed highlights the competitive advantage of the hybrid algorithm, particularly in



environments that require both fast and high-quality solutions. It is also noted that the hybrid algorithm's performance
remained stable as data volume increased, whereas the other algorithms' performance deteriorated, either with high
execution times or lower solution quality. These results demonstrate that the hybrid algorithm combines high
computational efficiency with superior solution quality, outperforming other traditional algorithms, particularly for
large-scale and highly complex problems. Therefore, adopting the hybrid algorithm is a strategic choice for any
applied optimization system in artificial intelligence, optimization, or big data analysis fields, where processing
demands accurate solutions with rapid response times.

CONCLUSION AND FUTURE WORK

This paper introduced a new multi-objective model for the aggregate production planning problem. The model
aimed to minimize production costs, total completion time, switching costs, and product delivery delays. Additionally,
a new hybrid metaheuristic algorithm was proposed by combining the Whale Optimization Algorithm and the Fly
Optimization Algorithm (WOFOA). Three standard algorithms GA, WOA, and Fly were also included. The results
showed that the hybrid metaheuristic algorithm produced the best outcome.
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