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Abstract. Recently, aggregate production planning has become increasingly important and complex. Therefore, this paper 

introduces a new multi-objective model for aggregate production planning that aims to minimize production costs, total 

production time, changeover costs, and product delivery delays. Additionally, a new hybrid metaheuristic algorithm 

(WAFOA) is proposed, which combines the Whale Optimization Algorithm and the Fly Optimization Algorithm to solve 

a multi-objective aggregate production planning problem. Three standard metaheuristic algorithms (Genetic, Whale 

Optimization, and Fly Optimization) are also tested with varying sample sizes for comparison. The results showed that the 

hybrid metaheuristic algorithm produced the best outcomes. 
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INTRODUCTION 

Aggregate Production Planning (APP) problems are important in many manufacturing companies. Managers 

recognize that personnel and production decisions, which adapt to changing client needs, can have a significant impact 

on the company's profitability [1]. APP is described as planning production quantities and schedules for a medium-

term timeframe of 3 to 18 months  [2]. During this stage, the amount of production needed to meet expected demand 

is figured out. APP tries to establish total production levels to suit future variable or unknown demand in each product 

category [3]. It also considers policy and decision-making factors such as hiring, overtime, layoffs, backorders, 

subcontracting, and inventory management [4]. Since the 1950s, different APP models with varying levels of 

complexity have been developed. As noted by [5], traditional methods for addressing these problems can be 

categorized into linear decision rules [6], linear programming [7-9], transportation methods [10], management 

coefficient approaches [11], search decision rules [12], and simulation [13]. In recent decades, APP problems have 

become highly complex and NP-hard. Thus, the researchers have focused on solving these complicated problems 

using metaheuristic algorithms [14-20]. Although metaheuristic algorithms have effectively been used to address 

complicated real-world APP problems, no single solution is effective for all situations due to the no-free lunch theorem 

[21]. So, modern ideas like self-adaptive modification of algorithms or hybrid algorithms that help you choose the 

right method try to get around the hidden challenges that metaheuristics have when they try to solve real APP problems 

. Several researchers have utilized metaheuristic algorithms, such as a hybrid model of genetic algorithm (GA) and 

ant colony optimization, to solve the APP of long-term policies in industries [22].  Additionally, a mixed-integer linear 

programming model was created for a generalized two-phase APP method [23]. After that, the genetic algorithm and 

tabu search methods were used to work on the APP model. In [24], To solve the integer-based linear programming 

model for APP problem sets, updated particle swarm optimization (PSO) strategies were suggested. Also, the 

assumption is that imprecise deterministic parametric values can give outcomes that are neither useful or practical 

[25- 28]. Most models for solving APP problems were focused on individual objectives and are incompatible with 

actual production planning systems.  As well as,  these methods mainly concentrate on solution algorithms without 

considering comprehensive, generalized models, making them incompatible with real production systems. As a result, 

no generalized and comprehensive models have been developed to adapt to actual production environments. The 

present study proposed a new hybrid algorithm (WOFOA) for solving the multi-objective APP problem. The 

remainder of this work is organized as follows: the mathematical programming model is presented first, followed by 
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the proposed Hybrid Algorithm. Next, the computational study and results are discussed, and finally, the conclusion 

along with potential directions for future work are provided. 

THE MATHEMATICAL MODEL 

A mathematical model of a Multi-Objective Linear Programming (MOLP) for INAPSAM was proposed. 

Notational definitions 
  𝑤𝑡 → Regular time labor cost per hour at each period 𝑡. 

 𝑀𝑡 → labor hours of regular time at each period 𝑡. 

 𝑊𝑡 → Work force sizes of worker type j at period t.                                 

 𝑜𝑡 → Over time labor cost per hour at each period t. 

 𝑂𝑡 → Namber of over time  hours of worker at period t.                                     

 ℎ𝑡 → Hiring and training cost per worker of period t. 

 𝐻𝑡 → Workforce hired at the beginning of period t. 

 𝑓𝑡 → Layoff cost per worker of period t. 

 𝐹𝑡 → Workforce laid off at beginning of period t. 

 𝑖𝑛𝑡 → Inventory holding cost per unit of product at each period t. 

 𝐼𝑛𝑡 → Units of inventory of product at the end of period t. 

 𝑏𝑛𝑡 → Backlog cost per unit of product at each period t. , 

 𝑐𝑛𝑡 → Unit material cost. 

 𝑝𝑛𝑡 → Units of product produced at period t. 

 𝑠𝑛𝑡 → Subcontracting cost per unit of product. 

 𝑆𝑛𝑡 → Units of product subcontracted at period t. 

Objective functions 

𝑀𝑖𝑛 𝐷 = ∑ ∑ 𝑤𝑡𝑀𝑛

𝑁

𝑛=1

𝑇
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Constraints 

Inventory level constraint: 

𝑝𝑛𝑡 + 𝐼𝑛(𝑡−1) − 𝐼𝑛𝑡 + 𝑆𝑛𝑡 − 𝐵𝑛(𝑡−1) + 𝐵𝑛𝑡 = 𝐷𝑛𝑡 ,    ∀𝑛 , ∀𝑡. (2) 

Capacity constraint:   

∑(𝐴𝑅 × 𝑃𝑛𝑡) −

𝑁

𝑛=1

(𝑀𝑛 × 𝑊𝑡) − 𝑂𝑡  ≤ 0  , ∀𝑡. (3) 

Workforce, hiring, and layoff constraints:   

𝐹𝑡 − 𝐻𝑡 + 𝑊𝑡 − 𝑊𝑡−1 = 0     ∀𝑡 . (4) 

Non-negativity constraints: 

𝑃𝑛𝑡 , 𝐼𝑛𝑡 , 𝐵𝑛𝑡 , 𝑆𝑛𝑡 , 𝑂𝑡 , 𝐻𝑡 , 𝐹𝑡 ,𝑊𝑡   ≥ 0         ∀𝑛, ∀𝑡 . 5.4.2.1                (5) 

PROPOSED  HYBRID ALGORITHM 

      Hybrid metaheuristic algorithms are effective solution techniques. They are created by merging two or more 

algorithms to increase the total search efficiency. A practical algorithm must exhaustively explore the entire search 

space and refine its search locally to find the optimal or near-optimal solution [29-35]. Accordingly, this study 

proposes a hybrid algorithm that balances exploration and exploitation to improve the speed and quality of the search 
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by integrating the Fly Optimization Algorithm with the whale algorithm. The steps of the hybrid algorithm are outlined 

as follows: 

The Steps of Implementation for the Hybrid Algorithm: 

Step 1. Initialization  

Initialize the population size  𝑛, the number of decision variables 𝑑, and the limits of the search space[lb, ub]. 

Generate an initial population Xi ∈ 𝑅𝑑 ,  i=1,2,..., n uniformly at random within the search space. 

Calculate the fitness of all members concerning the objective function. 

Find the best solution 𝑋∗  based on the minimum objective value. 

Step 2. Whale Optimization Phase (Global Search) 

It is run for almost 60% of the total number of iterations. It is based on humpback whales' bubble-net hunting strategy, 

and comprises two main behaviors: 

• Encircling the Prey: Updating the position of each whale by:  

𝐴 ⃗⃗  ⃗ (𝑡 + 1) = 𝑋 ∗ − 𝐴 ⃗⃗  ⃗ . |𝐶 ⃗⃗  ⃗. 𝑋 ∗ − 𝑋 ∗ (𝑡)| 

Where 𝐴 ⃗⃗  ⃗ = 2𝑎. 𝑟1 − 𝑎 , 𝐶 ⃗⃗  ⃗ = 2. 𝑟2  , a decrease linearly from 2 to 0 over iterations, 𝑟1  , 𝑟2  ∈[0,1] are random vectors. 

• Spiral Updating: Updating the position with 50% probability using a spiral equation: 

𝑋 ⃗⃗  ⃗(𝑡 + 1) = |𝑋⃗⃗⃗⃗ ∗ − 𝑋 ⃗⃗  ⃗(𝑡)|. 𝑒𝑏𝑙  . cos (2𝜋𝑙)|𝐶 ⃗⃗  ⃗ + 𝑋 ∗  

𝑙∈ [−1,1] is a random number. 

Step 3. Fly Optimization Phase (Local Search) 

After the WOA phase, FOA is executed for 40% of all iterations to enhance the best solution. FOA generates new 

candidate solutions around the current best solution using: 𝑋 ⃗⃗  ⃗
𝑛𝑒𝑤 = 𝑋 ∗   + Δ 

Δ is a small perturbation vector (usually Gaussian or uniform noise). 

The fitness of all generated solutions is evaluated. 

The best one among them replaces 𝑋 ∗    if it improves the objective value. 

Step 4. Selection and Comparison 

Compare the best solutions obtained from both WOA and FOA phases. 

The overall best solution  𝑋ℎ𝑦𝑏𝑟𝑖𝑑  = arg min{f(𝑋𝑊𝑂𝐴),f(𝑋𝐹𝑂𝐴)} 

Step 5: Local Fine-Tuning (Post-Optimization Adjustment) 

Apply a local perturbation procedure for a fixed number of iterations about the hybrid solution: 

𝑋 ⃗⃗  ⃗
𝑡𝑟𝑖𝑎𝑙 = 𝑋 ⃗⃗  ⃗

ℎ𝑦𝑏𝑟𝑖𝑑 + 𝑁(0, 𝜎) 

If any perturbed solution improves the objective function, it is adopted as the new best. 

 
 FIGURE 1. Flowchart of the WOFOA 
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COMPUTATIONAL  STUDY AND RESULT  

To verify and evaluate the performance of the WOFOA in solving the multi-objective aggregate production 

planning, simulation is used to analyze the effectiveness of the proposed algorithm. A variety of problems with 

medium and large sizes (10, 20, 30,40,75, 100, 150, 200, 300, 500, and 700 jobs). Then, the results also compare the 

performance of the hybrid algorithm (WOFOA) with three metaheuristic algorithms (genetic, whale, and Fly 

Optimization). The algorithms have been implemented 1000 times for every problem. The average time and the total 

costs for each objective of WOFOA, GA, WA, and FOA are depicted in Table 1. This table describes the outcomes 

of optimization algorithms, including Genetic, Whale, Hybrid (WOFOA), and Fly Optimization. The data shows the 

results of objective functions and execution time for various n values. This evaluation focused on two main criteria: 

solution quality (obj value) and execution efficiency (time). Regarding solution quality, the hybrid algorithm achieved 

the lowest obj values at all data sizes, indicating its strong ability to approach, and in some cases surpass, optimal 

solutions. For instance, at n = 150, the hybrid algorithm recorded an objective function value of approximately 2216.8, 

compared to: GA = 16023, WOA = 17533, FOA = 13802. At n = 750, the hybrid further improved its performance to 

achieve 11142, while the other algorithms recorded: GA = 1.1582e+, WOA = 86498, FOA = 1.1094e+. These 

significant differences highlight the hybrid algorithm's capability to find better and more stable solutions as data size 

and problem complexity increase.  

TABLE 1.  The outcome of  GA, WA, FOA, and WAFOA depend on MSE. 

n   GA WOA Fly Hybrid 

10 obj 792 1106.9 711.6 97.219 

Time 0.0768 0.0338 0.029 0.0221 

20 obj 1230 1798.1 1127.1 165.11 

Time 0.0029 0.0192 0.0266 0.0238 

30 obj 2286 3350.9 2002.2 413.39 

Time 0.0901 0.0179 0.0192 0.0118 

40 obj 2924.2 4258.8 2712.6 426.48 

Time 0.0488 0.0177 0.0162 0.0105 

75 obj 6446.8 7960.8 6105.4 1033.1 

Time 0.9673 0.0187 0.0225 0.0118 

100 obj 9757.3 11097 7669.6 1508.6 

Time 0.0602 0.0215 0.0239 0.0135 

150 obj 16023 17533 13802 2216.8 

Time 0.0958 0.0509 0.0448 0.0336 

200 obj 23460 22303 20438 2829 

Time 0.1192 0.0236 0.0461 0.0264 

300 obj 40871 35486 36026 4535.4 

Time 0.0923 0.0324 0.0441 0.0264 

500 obj 72065 55783 65222 7259.6 

Time 0.1527 0.0639 0.0857 0.0371 

750 obj 1.1582e 86498 1.1094e 11142 

Time 0.1609 0.0535 0.0762 0.0405 

 

In terms of execution time, the hybrid algorithm maintained excellent performance, often ranking as the fastest or 

second-fastest algorithm. For example: At n = 10, Hybrid was faster at 0.0221 seconds compared to GA (0.0768), 

WOA (0,0338), and Fly (0.029). At n = 750, Hybrid achieved an execution time of only 0.0405 seconds, while GA 

took 0.1609 seconds, WOA took 0.0530 seconds, and Fly took 0.0762 seconds. This excellent balance between 

accuracy and computational speed highlights the competitive advantage of the hybrid algorithm, particularly in 
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environments that require both fast and high-quality solutions. It is also noted that the hybrid algorithm's performance 

remained stable as data volume increased, whereas the other algorithms' performance deteriorated, either with high 

execution times or lower solution quality. These results demonstrate that the hybrid algorithm combines high 

computational efficiency with superior solution quality, outperforming other traditional algorithms, particularly for 

large-scale and highly complex problems. Therefore, adopting the hybrid algorithm is a strategic choice for any 

applied optimization system in artificial intelligence, optimization, or big data analysis fields, where processing 

demands accurate solutions with rapid response times. 

CONCLUSION AND FUTURE WORK 

     This paper introduced a new multi-objective model for the aggregate production planning problem. The model 

aimed to minimize production costs, total completion time, switching costs, and product delivery delays. Additionally, 

a new hybrid metaheuristic algorithm was proposed by combining the Whale Optimization Algorithm and the Fly 

Optimization Algorithm (WOFOA). Three standard algorithms GA, WOA, and Fly were also included. The results 

showed that the hybrid metaheuristic algorithm produced the best outcome. 
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