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Abstract. Cable-stayed beams are a fundamental research area in structural engineering due to their complex dynamic 

behavior and their widespread application in long-span structures, which motivates sustained research in both civil and 

mechanical engineering. The present study focuses on examining the geometric nonlinearity affecting the large-amplitude 

free vibrations of a beam supported by a symmetric cable system, adopting a single-mode analytical approach. General 

theoretical formulations are established for a multi-stayed beam based on Euler–Bernoulli beam theory, specifically 

integrating the nonlinear geometric effects induced by the cables' initial sag. A segmented model of the multi-cable beam 

is developed, and the resulting homogeneous system is solved numerically using the Newton–Raphson method to determine 

the natural frequencies and associated linear displacement fields. The analysis addresses the nonlinear problem by 

expanding the displacement function into a series based on the linear modes, which yields discrete expressions for the strain 

energy and kinetic energy. Under the influence of a point excitation, the nonlinear algebraic system derived from Hamilton's 

principle is solved via the application of the Benamar method. Ultimately, this investigation highlights the significant 

influence of geometric nonlinearity on the free vibrational behavior and quantifies the impact of key geometric parameters 

on the dynamic response of cable-suspended beams. 

INTRODUCTION 

Cable–beam systems, which combine flexible cables with elastic beams, offer significant advantages in civil and 

mechanical engineering, particularly for long-span structures. Their design improves efficiency and performance but 

leads to complex dynamic behavior due to large deformations and heavy loads, resulting in geometrically nonlinear 

vibrations. Despite growing academic interest, studies addressing these nonlinear dynamics remain limited. 

Several recent works have contributed to this topic. Berjal and al. (2024) [1] investigated the influence of support 

stiffness on the natural frequencies of cable-stayed beams, while Rjilatte and al. (2024) [2] examined thermal effects 

and concentrated masses. Kang and al. (2022) [3] highlighted the hardening behavior caused by cable–deck coupling. 

Other studies, such as Peng and al. (2019) [4] and Gattulli & Lepidi (2003) [5], analyzed time-delay control and 

internal resonances, respectively. Azrar and al. (1999) [6] and El Kadiri & Benamar (2002) [7] proposed analytical 

formulations for nonlinear vibrations, followed by El Hantati and al. (2024) [8] and Outassafte and al. (2023) [9], who 
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extended the analysis to FGM beams and crack detection. Furthermore, Oudra et al. (2024) [10] conducted 

optimization and advanced-design studies aimed at improving the vibrational performance of intelligent FGM 

structures. 

Building on these contributions, and following the previous works of El Hantati and al. (2022) [11] and El 

Khouddar and al. (2021) [12], the present research performs a parametric analysis of the geometrically nonlinear 

vibration behavior of a cable-stayed beam. The methodology relies on a linear modal analysis as the foundation for a 

nonlinear model, solved using the implicit Benamar method, recognized for its accuracy in studying complex vibrating 

structures. 

METHOD 

Linear Formulation 

The present study develops a simplified structural model of a cable-stayed bridge deck, represented by a continuous 
beam supported by multiple inclined cables (Figure 1). The beam, simply supported at its ends, is equipped with 
translational and rotational elastic supports characterized by stiffness coefficients 𝐾𝑡𝑖 and 𝐾𝜃𝑖. The beam–cable 
junctions divide the main girder into discrete segments, each treated as an independent beam element for structural 
analysis purposes. 

The static equilibrium configuration is described through the cable displacements 𝑢𝑐𝑗 ,  𝑣𝑐𝑗 , 𝑤𝑐𝑗 and the transverse 

displacements of the beam 𝑣𝑏𝑖 . Each cable is assumed to follow a parabolic profile given by 𝑦𝑐𝑗 = 4𝑑𝑐𝑗[𝑥𝑐𝑗/𝑙𝑐𝑗 −
(𝑥𝑐𝑗/𝑙𝑐𝑗)2], where the sag-to-span ratio 𝑑𝑐𝑗/𝑙𝑐𝑗  remains below 1/10.  

The pylons anchoring the cables are considered rigid, as experimental and finite-element studies indicate negligible 

vibration amplitudes. Due to the dominant axial stiffness of the beam (𝐸𝑏𝐴𝑏/𝑙𝑏 >> 48𝐸𝑏𝐴𝑏/𝑙𝑏
3), axial deformations 

are disregarded. Furthermore, the horizontal component of cable tension has a minor influence on the overall response 
and is therefore neglected, following the assumptions established in Gattulli (2002) [13]. 

 

 

FIGURE 1. Configurations of multiple cable-stayed beams with multiple elastic supports 

 
In accordance with the stated assumptions, Hamilton’s variational principle is employed to derive the differential 

equations governing the coplanar motion, following an appropriate reduction of the structural model. 
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𝑒𝑐𝑗 denotes the uniform dynamic elongation of cable 𝑗. 
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The analysis is based on the boundary conditions of the beam as previously discussed. The upper end of each cable 

is assumed to be rigidly fixed to the tower, while the lower end is anchored to the beam. Consequently, the composite 



system must satisfy both the continuity requirements and the geometric boundary conditions described in Berjal and 
al. (2024) [14]. 

To achieve more general conclusions, dimensionless variables are introduced as detailed in [15]. This 
transformation allows the fundamental equations (1) and (2) to be reformulated in a non-dimensional form, ensuring 
their generality and independence from physical units. Such normalization enhances the physical interpretation of the 
results and facilitates comparative analysis with previous studies. Moreover, the boundary conditions are expressed in 
a dimensionless format, as specified in [15]. 

The model developed in this study corresponds to a symmetrically cable-stayed beam (double-cable 

configuration). Based on the theoretical framework previously established and under specific geometric conditions, 

namely cable anchorage points located at one-third of the span and an inclination angle of 30°, the following variable 

transformations are introduced to facilitate the subsequent formulation. 

 
𝐻𝑐𝑗 = 𝐻𝑐 , 𝑑𝑗 = 𝑑, 𝜃𝑗 = 𝜃, 𝑚𝑐𝑗 = 𝑚𝑐 , 𝐸𝑐𝑗𝐴𝑐𝑗 = 𝐸𝑐𝐴𝑐,  𝑙𝑐𝑗 = 𝑙𝑐 ,  𝛾𝑐𝑗 = 𝛾𝑐 , 𝑚𝑏𝑖 = 𝑚𝑏 , 𝐸𝑏𝑖𝐼𝑏𝑖 = 𝐸𝑏𝐼𝑏 ,

 𝑗 = 1,2;  𝑖 = 1,2,3
 (3) 

 
The variable 𝑑𝑗 represents the dimensionless deflection of the 𝑗 th cable. Consequently, the application of the 

method of separation of variables allows establishing the following relationship: 
 

𝑣𝑐𝑗 = 𝑤𝑐𝑗(𝑥)𝑒𝑖(𝜔 𝜔0)⁄ 𝜏; (𝑗 = 1,2)

𝑣𝑏𝑖 = 𝑤𝑏𝑖(𝑥)𝑒𝑖(𝜔 𝜔0)⁄ 𝜏 ; (𝑖 = 1,2,3)
 (4) 

 
In addition, the corresponding boundary conditions are derived as follows, taking into account the elastic 

translational and rotational supports introduced at both ends of the beam. 
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The analysis of the previously derived equations allows the solutions to be expressed in the following form: 

 
𝑤𝑏𝑖(𝑥) = 𝐴𝑖𝑏 cos 𝛽𝑏𝑥 + 𝐵𝑖𝑏 sin 𝛽𝑏𝑥 + 𝐶𝑖𝑏 cosh 𝛽𝑏𝑥 +  𝐷𝑖𝑏 sinh 𝛽𝑏𝑥    (𝑖 = 1,2,3)

𝑤𝑐𝑗(𝑥) = 𝐸𝑗𝑐 sin 𝛽𝑐𝑥 +  𝐹𝑗𝑐 cos 𝛽𝑐𝑥 + 𝐷𝑗𝑐    (𝑗 = 1,2)
 (6) 

Nonlinear Formulation 

According to Hamilton’s principle, the dynamic behavior of the system can be formulated as follows: 

𝛿 (∫ (𝑇 − 𝑉)
2𝜋 𝜔⁄

0

𝑑𝑡) = 0  (7) 

 



The kinetic energy of the beam is denoted by 𝑇, while 𝑉 represents the total strain energy. The latter consists of 
two components: the bending strain energy, 𝑉𝑏, and the strain energy associated with the axial (normal) forces, 𝑉𝑎, 
which introduce the geometric nonlinearity of the system for each beam. 

By introducing 𝑊̇ =
∂𝑊

∂𝑡
, which denotes the time derivative of the transverse displacement, the kinetic energy can 

be expressed as follows, in accordance with the formulation proposed in [16] : 
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By introducing 𝑊′′ =
𝑑2𝑊

𝑑𝑥2 , which represents the second derivative of the transverse displacement with respect to 

the longitudinal coordinate 𝑥, the bending strain energy 𝑉𝑏, together with the translational and rotational spring 
contributions 𝑉𝑇 𝑠𝑝𝑟𝑖𝑛𝑔and 𝑉𝑅 𝑠𝑝𝑟𝑖𝑛𝑔, can be expressed as follows: 
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(11) 

 

The strain energy associated with the axial (normal) forces, which are responsible for the geometric nonlinearity 

of the system, is denoted by 𝑉𝑎 and can be expressed for each beam as follows: 
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In this analysis, the transverse displacement is expressed in terms of a modal expansion, constructed from a series 

of fundamental spatial functions 𝜙𝑖(𝑥), where 𝑖 varies from 1 to 𝑁, with 𝑁 representing the number of linear modes 
considered for the beam. These functions are associated with the generalized temporal coordinates 𝑞𝑖(𝑡), which are 
assumed to be harmonic in nature. Accordingly, the transverse displacement 𝑊(𝑥, 𝑡) can be written as follows: 

 

w(x, t) = aiW(x) sin(ωt)  (13) 

 
By introducing the constant coefficients aia_iai into the previous energy expressions through Eq. (13), the 

following formulations are obtained: 

Vb =
1

2
aiajkijsin2(ωt)  (14) 

Va =
1

4
aiajakalbijklsin4(ωt)  (15) 

T =
1

2
ω2aiajmijcos2(ωt)  (16) 

 

In this formulation, mij, kij and bijkl represent the mass matrix, the linear stiffness tensor, and the nonlinear 

stiffness tensor, respectively. Their analytical expressions are given below: 
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𝑚𝑖𝑗 = 𝜌𝑏𝑆𝑏 ∫ 𝑊𝑖𝑊𝑗𝑑𝑥
𝐿1
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By substituting Eqs. (14), (15), and (16) into Eq. (7), and after simplification, the following expression is obtained: 
 

2𝑎𝑖𝑘𝑖𝑟 + 3𝑎𝑖𝑎𝑗𝑎𝑘𝑏𝑖𝑗𝑘𝑟 − 2𝜔2𝑎𝑖𝑚𝑖𝑟 = 0  (20) 

 
Prior to determining the contribution coefficient aia_iai and the associated natural frequency ω, Eq. (13) is 

rewritten in a nondimensional form by replacing the dimensional parameters with their corresponding reduced 
(dimensionless) counterparts. 

 
𝑥 = 𝐿𝑥∗     and    𝑊(𝑥) = 𝐻𝑊∗(𝑥∗)   (21) 

 

In this expression, 𝐻 denotes the characteristic height of the beam. Assuming that the beams illustrated in Fig. 1 

are geometrically identical, the tensor expressions can therefore be written as follows:  
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By substituting Eqs. (22), (23), and (24) into Eq. (20), the following system of nonlinear algebraic equations is 

obtained: 
 

2𝑎𝑖
∗𝑘𝑖𝑟

∗ + 3𝑎𝑖
∗𝑎𝑗

∗𝑎𝑘
∗ 𝑏𝑖𝑗𝑘𝑟

∗ − 2𝜔∗2𝑎𝑖
∗𝑚𝑖𝑟

∗ = 0   (25) 

 
The equation was solved using a single-mode reduced modal approach, initially developed by Benamar and Kadiri 

in [16]. This method focuses exclusively on the dominant vibration mode, assuming its predominance in the nonlinear 
response, while neglecting the contributions of higher-order modes. 

 

(
𝜔𝑛𝑙

∗

𝜔𝑙
∗ )

2

= 1 +
3

2
𝑎𝑖

2
𝐵𝑖𝑖𝑖𝑖

𝐾𝑖𝑖

  (26) 

 
With : 

𝜔𝑙
∗ =

𝐾𝑖𝑖

𝑚𝑖𝑖
  (27) 

 

NUMERICAL RESULTS AND DISCUSSION 

Linear Vibration Analysis 

This section first presents the results related to the linear part of the problem, followed by those obtained from the 
nonlinear analysis. The linear natural frequencies were computed using the material properties reported in[14], 
considering three beam configurations: clamped–clamped, simply supported–simply supported, and clamped–simply 
supported. The comparison between the obtained results and those available in previous studies by [17] shows an 
excellent agreement, thereby confirming the reliability of the adopted methodology. 



Table 1 provides a detailed comparison between the natural frequencies obtained in the present study and those 
reported in previous works, highlighting the high accuracy of the computed results. An excellent agreement is 
observed, with negligible discrepancies for the first six vibration modes. This consistency confirms the reliability and 
relevance of the adopted analytical and methodological approaches, in accordance with the reference data available in 
the scientific literature.  

TABLE 1. Comparison of the first six natural frequencies of double cable-stayed beams in SS, CS, and CC cases. 

Natural 

frequency 

Present study 

(SS) 

Theoretical 

value (SS) [15] 

ANSYS (SS) 

[15] 

Present study 

(CC) 

Present study 

(CS) 

1st 0,1362 0,1355 0,1360 0,1680 0,1480 

2nd 0,2310 0,2307 0,2307 0,3370 0,2770 

3rd 0,4354 0,4354 0,4349 0,5940 0,5140 

4th 0,7849 0,7848 0,7840 0,9850 0,8810 

5th 1,2162 1,2162 1,2147 1,4700 1,3360 

6th 1,3428 1,3503 1,3436 2,0440 1,3420 

𝐾T1 0 0 0 ∞ ∞ 

𝐾T2 0 0 0 ∞ 0 

𝐾𝜃1 ∞ ∞ ∞ ∞ ∞ 

𝐾𝜃2 ∞ ∞ ∞ ∞ ∞ 

Nonlinear Vibration Analysis 

To validate the proposed variational approach for analyzing the nonlinear vibrations of a beam suspended by two 
elastic cables located at x=L/3 and x=2L/3 along its total span, a parametric study is carried out by introducing 
translational and rotational elastic supports at both ends. The translational stiffnesses are assumed to approach infinity 
(𝐾𝑡1 = 𝐾𝑡2 = ∞), whereas the rotational stiffnesses are varied according to 𝐾𝜃𝑖 = (0, 10, 100). 

The objective of this section is to investigate the influence of the maximum vibration amplitude 𝑊𝑚𝑎𝑥
∗  on the 

dynamic behavior of the beam. This effect is illustrated through the nonlinear mode shape and the corresponding 
curvature for each value of 𝐾𝜃 . In the context of free vibration analysis, the dimensionless nonlinear frequency  𝜔𝑛

∗  is 
compared to the linear frequency 𝜔𝑙

∗using the ratio 𝜔𝑛
∗ /𝜔𝑙

∗, expressed as a function of the dimensionless maximum 
amplitude 𝑊𝑚𝑎𝑥

∗ . 

 

FIGURE 2. Variation of the frequency 𝜔𝑛
∗ /𝜔𝑙

∗ as a function of the dimensionless maximum amplitude 𝑊𝑚𝑎𝑥
∗ , for different values 

of the rotational stiffness 𝐾𝜃 

 
Figure 2 highlights the influence of the rotational stiffness of the supports, 𝐾𝜃 , on the nonlinear free vibration 

response of the beam suspended by elastic cables. It can be observed that the frequency ratio 𝜔𝑛
∗ /𝜔𝑙

∗increases gradually 
with the dimensionless maximum amplitude 𝑊𝑚𝑎𝑥

∗ , indicating a hardening-type behavior that is characteristic of 
geometric nonlinear effects. 

• For 𝐾𝜃1 = 𝐾𝜃2 = 0 (supports free in rotation), the curve exhibits the steepest slope, indicating a 

pronounced nonlinearity where the frequency increases rapidly with amplitude. 

• For 𝐾𝜃1 = 𝐾𝜃2 = 10, the curve lies slightly below the previous one, showing that a moderate rotational 

stiffness slightly reduces the hardening effect. 



• For 𝐾𝜃1 = 𝐾𝜃2 = 100, the response becomes stiffer in rotation; the curve flattens, and the sensitivity of 

the frequency to the amplitude decreases significantly. 

 
Thus, as 𝐾𝜃  increases, the beam response tends toward a quasi-linear behavior, with the geometric nonlinearity 

becoming progressively less significant. 
To investigate the influence of the rotational stiffness at the beam ends on its nonlinear dynamic behavior, Figure 

3 illustrates the distribution of the curvature 
𝑑2𝑊(𝑥)

𝑑𝑥2  corresponding to the first vibration mode. The results are presented 

for three boundary conditions, 𝐾𝜃1 = 𝐾𝜃2 = 0, 10 𝑎𝑛𝑑 100, and for two values of the dimensionless vibration 
amplitude  𝑊𝑚𝑎𝑥

∗ . This comparison reveals the combined effects of rotational stiffness and geometric nonlinearity on 
the modal shape and the curvature concentration near the beam supports. 

 

FIGURE 3. Curvatures of a cable-stayed beam near the first mode for  𝐾𝜃1 = 𝐾𝜃2 ∈  {0, 10, 100} and two vibration amplitudes 

𝑊𝑚𝑎𝑥
∗  ∈ {1, 1.5} 

 
When transitioning from 𝐾𝜃1 = 𝐾𝜃2 = 0 (free supports) to 10 and then to 100, the following trends are observed: 

• A noticeable increase in the positive curvature peaks near the beam ends, accompanied by an 

enhancement of the negative curvature around the mid-span region. 

• A shift of the inflection points toward the supports, indicating a gradual transition from an almost simply 

supported behavior to a quasi-clamped one. 

• A modal shape that becomes stiffer near the ends (formation of pronounced boundary layers), while 

maintaining symmetry with respect to the mid-span. 

 
An increase in the dimensionless maximum amplitude 𝑊𝑚𝑎𝑥

∗  intensifies the geometric nonlinearity, as evidenced 
by the nonlinear deviations observed between 𝑊𝑚𝑎𝑥

∗ = 1 𝑎𝑛𝑑 1,5, particularly for higher values of 𝐾𝜃 . 

CONCLUSION 

The present study developed a single-mode analytical model for analyzing the geometrically nonlinear free 
vibrations of a cable-supported beam with elastic end supports. Based on Hamilton’s principle and the Euler–Bernoulli 
beam theory, the proposed method—solved using the Newton–Raphson iterative algorithm—accurately predicts the 
evolution of natural frequencies and mode shapes as a function of the vibration amplitude. The results highlight a 
hardening-type spring behavior and emphasize the significant influence of the rotational stiffness of the supports on 
the dynamic response. The proposed model proves to be both accurate and computationally efficient, providing a solid 
framework for the extended analysis of beam–cable systems under more complex boundary and loading conditions. 
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