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Abstract. Cable-stayed beams are a fundamental research area in structural engineering due to their complex dynamic
behavior and their widespread application in long-span structures, which motivates sustained research in both civil and
mechanical engineering. The present study focuses on examining the geometric nonlinearity affecting the large-amplitude
free vibrations of a beam supported by a symmetric cable system, adopting a single-mode analytical approach. General
theoretical formulations are established for a multi-stayed beam based on Euler—Bernoulli beam theory, specifically
integrating the nonlinear geometric effects induced by the cables' initial sag. A segmented model of the multi-cable beam
is developed, and the resulting homogeneous system is solved numerically using the Newton—Raphson method to determine
the natural frequencies and associated linear displacement fields. The analysis addresses the nonlinear problem by
expanding the displacement function into a series based on the linear modes, which yields discrete expressions for the strain
energy and kinetic energy. Under the influence of a point excitation, the nonlinear algebraic system derived from Hamilton's
principle is solved via the application of the Benamar method. Ultimately, this investigation highlights the significant
influence of geometric nonlinearity on the free vibrational behavior and quantifies the impact of key geometric parameters
on the dynamic response of cable-suspended beams.

INTRODUCTION

Cable-beam systems, which combine flexible cables with elastic beams, offer significant advantages in civil and
mechanical engineering, particularly for long-span structures. Their design improves efficiency and performance but
leads to complex dynamic behavior due to large deformations and heavy loads, resulting in geometrically nonlinear
vibrations. Despite growing academic interest, studies addressing these nonlinear dynamics remain limited.

Several recent works have contributed to this topic. Berjal and al. (2024) [1] investigated the influence of support
stiffness on the natural frequencies of cable-stayed beams, while Rjilatte and al. (2024) [2] examined thermal effects
and concentrated masses. Kang and al. (2022) [3] highlighted the hardening behavior caused by cable—deck coupling.
Other studies, such as Peng and al. (2019) [4] and Gattulli & Lepidi (2003) [5], analyzed time-delay control and
internal resonances, respectively. Azrar and al. (1999) [6] and El Kadiri & Benamar (2002) [7] proposed analytical
formulations for nonlinear vibrations, followed by El Hantati and al. (2024) [8] and Outassafte and al. (2023) [9], who
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extended the analysis to FGM beams and crack detection. Furthermore, Oudra et al. (2024) [10] conducted
optimization and advanced-design studies aimed at improving the vibrational performance of intelligent FGM
structures.

Building on these contributions, and following the previous works of El Hantati and al. (2022) [11] and El
Khouddar and al. (2021) [12], the present research performs a parametric analysis of the geometrically nonlinear
vibration behavior of a cable-stayed beam. The methodology relies on a linear modal analysis as the foundation for a
nonlinear model, solved using the implicit Benamar method, recognized for its accuracy in studying complex vibrating
structures.

METHOD

Linear Formulation

The present study develops a simplified structural model of a cable-stayed bridge deck, represented by a continuous
beam supported by multiple inclined cables (Figure 1). The beam, simply supported at its ends, is equipped with
translational and rotational elastic supports characterized by stiffness coefficients K;; and Kp;. The beam—cable
junctions divide the main girder into discrete segments, each treated as an independent beam element for structural
analysis purposes.

The static equilibrium configuration is described through the cable displacements wj, v¢j, w,;and the transverse
displacements of the beam v},; . Each cable is assumed to follow a parabolic profile given by y; = 4dj[x;/l;; —
(xcj/le j)z], where the sag-to-span ratio d.;/l.; remains below 1/10.

The pylons anchoring the cables are considered rigid, as experimental and finite-element studies indicate negligible
vibration amplitudes. Due to the dominant axial stiffness of the beam (E, 4, /1, >> 48E,A,/13), axial deformations
are disregarded. Furthermore, the horizontal component of cable tension has a minor influence on the overall response
and is therefore neglected, following the assumptions established in Gattulli (2002) [13].
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FIGURE 1. Configurations of multiple cable-stayed beams with multiple elastic supports

In accordance with the stated assumptions, Hamilton’s variational principle is employed to derive the differential
equations governing the coplanar motion, following an appropriate reduction of the structural model.
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The analysis is based on the boundary conditions of the beam as previously discussed. The upper end of each cable
is assumed to be rigidly fixed to the tower, while the lower end is anchored to the beam. Consequently, the composite
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system must satisfy both the continuity requirements and the geometric boundary conditions described in Berjal and
al. (2024) [14].

To achieve more general conclusions, dimensionless variables are introduced as detailed in [15]. This
transformation allows the fundamental equations (1) and (2) to be reformulated in a non-dimensional form, ensuring
their generality and independence from physical units. Such normalization enhances the physical interpretation of the
results and facilitates comparative analysis with previous studies. Moreover, the boundary conditions are expressed in
a dimensionless format, as specified in [15].

The model developed in this study corresponds to a symmetrically cable-stayed beam (double-cable
configuration). Based on the theoretical framework previously established and under specific geometric conditions,
namely cable anchorage points located at one-third of the span and an inclination angle of 30°, the following variable
transformations are introduced to facilitate the subsequent formulation.

H, H.,d; =d,0; = H'mcj = mcrEchcj =EA,, lcj =1, Yej = YerMpi = My, Epily; = Eply,

j = e by
=12 i=123

3)

The variable d; represents the dimensionless deflection of the j th cable. Consequently, the application of the
method of separation of variables allows establishing the following relationship:

v = wj(x)el@/@0T; (j = 1,2)

Vpi = Wpi (%) @/@07 5 (i = 1,2,3)

4)

In addition, the corresponding boundary conditions are derived as follows, taking into account the elastic
translational and rotational supports introduced at both ends of the beam.
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The analysis of the previously derived equations allows the solutions to be expressed in the following form:
wpi (x) = Ay cos Bpx + By, sin Bpx + Cyp, cosh By x + Dy, sinh Byx (i = 1,2,3) 6
wej(x) = EjcsinBex + Fjccosfex + Dje (j=1,2) (6)
Nonlinear Formulation
According to Hamilton’s principle, the dynamic behavior of the system can be formulated as follows:
21/ w
5<f (T—V)dt):O @
0
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The kinetic energy of the beam is denoted by T, while V' represents the total strain energy. The latter consists of
two components: the bending strain energy, V;,, and the strain energy associated with the axial (normal) forces, V,,
which introduce the geometric nonlinearity of the system for each beam.

By introducing W = 5 Wthh denotes the time derivative of the transverse displacement, the kinetic energy can
be expressed as follows, in accordance with the formulation proposed in [16] :

1 Lb 1w, (x, )\
_2 8
T ZprbL ( at ) dx ®

By introducing W' = ¥ which represents the second derivative of the transverse displacement with respect to

dx?’
the longitudinal coordinate x, the bending strain energy V,, together with the translational and rotational spring
contributions Vr springand Vi spring, can be expressed as follows:

Eyly (" (07w, (x,0)\" E A (sin )2 Le
=T 9
b 2 fo ( Ix? dx + > wy (x, t)f wy, (x, t)dx 9
VT spring = Z KT Sring Wb (xT Sring» t)) (10)
i=
n
1 Owy, (Xg sri ,t)
Vi spring = EZ R Sring ( 76;@ [¢5))
i=1

The strain energy associated with the axial (normal) forces, which are responsible for the geometric nonlinearity
of the system, is denoted by V, and can be expressed for each beam as follows:

EbIb aWb(X t)
va - 8L, U ] “

In this analysis, the transverse displacement is expressed in terms of a modal expansion, constructed from a series
of fundamental spatial functions ¢;(x), where i varies from 1 to N, with N representing the number of linear modes
considered for the beam. These functions are associated with the generalized temporal coordinates g;(t), which are
assumed to be harmonic in nature. Accordingly, the transverse displacement W (x, t) can be written as follows:

w(x, t) = a;W(x) sin(wt) (13)

By introducing the constant coefficients aia iai into the previous energy expressions through Eq. (13), the
following formulations are obtained:

1
V, = Eaiajkijsinz (wb) (14)
Va = Zaiajakalbijklsin‘*(wt) (15)
1
T= szaiajmijcosz(wt) (16)

In this formulation, my;, kj; and byjy represent the mass matrix, the linear stiffness tensor, and the nonlinear
stiffness tensor, respectively. Their analytical expressions are given below:

Ly aZVVi a W 5 L¢
Ki; = Eply f 7 )\ 5z dx + E.A(sin 8)?W, f Widx + Z Kr sring Wi(%7 sring) Wi (7 sring)
0

@17)
aWL' (xR Sring) aVV] (xR S‘ring)
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Ly
my; = ppSp | WiWdx (19
0

By substituting Egs. (14), (15), and (16) into Eq. (7), and after simplification, the following expression is obtained:

Zaikl-r + 3aia]-akbijkr - szaimir =0 (20)

Prior to determining the contribution coefficient aia iai and the associated natural frequency w, Eq. (13) is

rewritten in a nondimensional form by replacing the dimensional parameters with their corresponding reduced
(dimensionless) counterparts.

x=Lx* and W(x) = HW*(x") 21

In this expression, H denotes the characteristic height of the beam. Assuming that the beams illustrated in Fig. 1
are geometrically identical, the tensor expressions can therefore be written as follows:

1
mj; = f Wi Wydx” (22)
0
12w\ (0P Le .
k;j = f (W,,;l) (?ﬂ]) dx* + (Sin 9)2W1*i f Wl*jdx* + Z KT Sring Wl*i(xT Sring) Wl*j (xT Sring)
0 0 i=1
n (23)
aWi (xR Sring) aij (xR Sring)
+ KR Sring dx* dx*
i=1
oWy (OW; OWY\ (OWy
= d ( ) ( )d » 24
Kt afo (6x*)<6x*> xfo ax ) \ax ) @4
By substituting Egs. (22), (23), and (24) into Eq. (20), the following system of nonlinear algebraic equations is
obtained:
2a;k;, + 3a;ajagb, — 2w?a;im;, =0 (25)

The equation was solved using a single-mode reduced modal approach, initially developed by Benamar and Kadiri
in [16]. This method focuses exclusively on the dominant vibration mode, assuming its predominance in the nonlinear
response, while neglecting the contributions of higher-order modes.

.\ 2
Wy 3 B
=14 —a’ 26
(“)? > * 2% Ki; 26)
With :
W] = K @27)
! mi;

NUMERICAL RESULTS AND DISCUSSION

Linear Vibration Analysis

This section first presents the results related to the linear part of the problem, followed by those obtained from the
nonlinear analysis. The linear natural frequencies were computed using the material properties reported in[14],
considering three beam configurations: clamped—clamped, simply supported—simply supported, and clamped-simply
supported. The comparison between the obtained results and those available in previous studies by [17] shows an
excellent agreement, thereby confirming the reliability of the adopted methodology.
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Table 1 provides a detailed comparison between the natural frequencies obtained in the present study and those
reported in previous works, highlighting the high accuracy of the computed results. An excellent agreement is
observed, with negligible discrepancies for the first six vibration modes. This consistency confirms the reliability and
relevance of the adopted analytical and methodological approaches, in accordance with the reference data available in
the scientific literature.

TABLE 1. Comparison of the first six natural frequencies of double cable-stayed beams in SS, CS, and CC cases.

Natural Present study Theoretical ANSYS (SS) Present study Present study

frequency (SS) value (SS) [15] [15] (CO) (CS)
Ist 0,1362 0,1355 0,1360 0,1680 0,1480
2nd 0,2310 0,2307 0,2307 0,3370 0,2770
3rd 0,4354 0,4354 0,4349 0,5940 0,5140
4th 0,7849 0,7848 0,7840 0,9850 0,8810
Sth 1,2162 1,2162 1,2147 1,4700 1,3360
6th 1,3428 1,3503 1,3436 2,0440 1,3420
Krq 0 0 0 © 0
K1, 0 0 0 © 0
Kgq © 0 o9) 0 0
Ko, © 0 0 0 0

Nonlinear Vibration Analysis

To validate the proposed variational approach for analyzing the nonlinear vibrations of a beam suspended by two
elastic cables located at x=L/3 and x=2L/3 along its total span, a parametric study is carried out by introducing
translational and rotational elastic supports at both ends. The translational stiffnesses are assumed to approach infinity
(K¢1 = K, = 00), whereas the rotational stiffnesses are varied according to Kg; = (0,10, 100).

The objective of this section is to investigate the influence of the maximum vibration amplitude W,,,, on the
dynamic behavior of the beam. This effect is illustrated through the nonlinear mode shape and the corresponding
curvature for each value of Ky. In the context of free vibration analysis, the dimensionless nonlinear frequency wy, is
compared to the linear frequency w;using the ratio w,/w;, expressed as a function of the dimensionless maximum
amplitude Wi, 4 -

FIGURE 2. Variation of the frequency wy,/wj as a function of the dimensionless maximum amplitude Wy, for different values
of the rotational stiffness Ky

Figure 2 highlights the influence of the rotational stiffness of the supports, Ky, on the nonlinear free vibration
response of the beam suspended by elastic cables. It can be observed that the frequency ratio w;,/w;increases gradually
with the dimensionless maximum amplitude W,,,,, indicating a hardening-type behavior that is characteristic of
geometric nonlinear effects.

e For Ky, = Ky, = 0 (supports free in rotation), the curve exhibits the steepest slope, indicating a
pronounced nonlinearity where the frequency increases rapidly with amplitude.

e For Kg; = Ky, = 10, the curve lies slightly below the previous one, showing that a moderate rotational
stiffness slightly reduces the hardening effect.
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e For Ky, = Ky, = 100, the response becomes stiffer in rotation; the curve flattens, and the sensitivity of
the frequency to the amplitude decreases significantly.

Thus, as Ky increases, the beam response tends toward a quasi-linear behavior, with the geometric nonlinearity
becoming progressively less significant.

To investigate the influence of the rotational stiffness at the beam ends on its nonlinear dynamic behavior, Figure
2w (x

=

for three boundary conditions, Ky, = Kg, = 0,10 and 100, and for two values of the dimensionless vibration
amplitude Wjy,,. This comparison reveals the combined effects of rotational stiftness and geometric nonlinearity on
the modal shape and the curvature concentration near the beam supports.

3 illustrates the distribution of the curvature £ ) corresponding to the first vibration mode. The results are presented

FIGURE 3. Curvatures of a cable-stayed beam near the first mode for Ky; = Ky, € {0,10,100} and two vibration amplitudes
Winax € {1,1.5}

When transitioning from Kg; = Ky, = 0 (free supports) to 10 and then to 100, the following trends are observed:
e A noticeable increase in the positive curvature peaks near the beam ends, accompanied by an
enhancement of the negative curvature around the mid-span region.
e A sshift of the inflection points toward the supports, indicating a gradual transition from an almost simply
supported behavior to a quasi-clamped one.
e A modal shape that becomes stiffer near the ends (formation of pronounced boundary layers), while
maintaining symmetry with respect to the mid-span.

An increase in the dimensionless maximum amplitude W, intensifies the geometric nonlinearity, as evidenced
by the nonlinear deviations observed between W, = 1 and 1,5, particularly for higher values of K.

CONCLUSION

The present study developed a single-mode analytical model for analyzing the geometrically nonlinear free
vibrations of a cable-supported beam with elastic end supports. Based on Hamilton’s principle and the Euler—Bernoulli
beam theory, the proposed method—solved using the Newton—Raphson iterative algorithm—accurately predicts the
evolution of natural frequencies and mode shapes as a function of the vibration amplitude. The results highlight a
hardening-type spring behavior and emphasize the significant influence of the rotational stiffness of the supports on
the dynamic response. The proposed model proves to be both accurate and computationally efficient, providing a solid
framework for the extended analysis of beam—cable systems under more complex boundary and loading conditions.
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