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Abstract. This paper presents an integrated framework for production and maintenance optimization in a hybrid solar—wind energy
system under Nigerian climatic conditions. The approach couples power generation forecasting with reliability-driven maintenance
scheduling to minimize life-cycle cost while ensuring operational reliability. Power output is predicted using an Artificial Neural
Network (ANN), while component degradation is modeled through the Weibull reliability function incorporating a virtual age
formulation. A restoration impact factor (a) is introduced to represent imperfect maintenance, quantifying partial reliability
recovery after each intervention. Remaining Useful Life (RUL) is predicted using an LSTM-based model trained on normalized
operational covariates and updated online after each maintenance event. Results over a 60-month horizon identify the optimal
strategy as five preventive and twenty-one predictive maintenance actions, achieving a total cost of €194,000 and maintaining
system reliability above a threshold. Sensitivity analysis shows that increasing corrective maintenance cost shifts the optimal plan
toward preventive dominance, confirming the model’s adaptive behavior. The proposed a-based framework provides a practical,
data-driven tool for reliability-centered maintenance planning in hybrid renewable systems, offering improved cost efficiency and
resilience in variable operating environments.

INTRODUCTION

The escalating concerns over rising carbon emissions and their impact on global temperature trends have
intensified the urgency to transition toward sustainable energy solutions. (Senthilkumar & Jayasankar, 2026).
Renewable energy sources, particularly solar and wind, have emerged as viable alternatives that can significantly
reduce dependence on fossil fuels while mitigating environmental degradation. However, the inherent intermittency
of individual renewable sources poses substantial challenges to power system reliability. To address this limitation,
hybrid solar—wind systems have gained considerable attention due to their complementary operational characteristics:
solar energy peaks during daylight hours while wind energy often exhibits stronger generation during evening and
night periods, thereby reducing overall intermittency and enhancing system reliability.

The optimal sizing of hybrid solar—wind systems has been extensively investigated through various optimization
methodologies. (Senthilkumar & Jayasankar, 2026) employed the secretary bird optimization algorithm to minimize
the cost of energy and loss of power supply probability for stand-alone hybrid PV/wind/battery systems. (Akhtari &
Karlstrom, 2025) demonstrated that levelized costs for optimized systems range between 0.16 and 0.48 $/kWh when
wind energy is included, compared to 0.44—0.63 $/kWh without wind, highlighting the economic advantage of hybrid
configurations under varying meteorological conditions. (Winsly et al., 2025) applied HOMER PRO to achieve 95%
renewable penetration with a levelized cost of 0.040 $/kWh by integrating solar, wind, and biomass sources. (Gou et
al., 2024) investigated capacity configuration optimization for hybrid renewable energy systems with concentrating
solar power, determining an optimal VRE sizing of 4000 MW solar and 1000 MW wind. (Sadeghibakhtiar et al., 2024)
pioneered a dual-objective optimization approach that simultaneously considered reliability and system costs,
employing a genetic algorithm and NSGA-II to optimize photovoltaic panel area, wind turbine specifications, and
battery capacity while accounting for component availability through failure and repair rates. (C. Wang et al., 2023)
incorporated component reliability into capacity optimization using sequential Monte Carlo simulation to model fault
probabilities of wind turbines and photovoltaic generators, optimizing hybrid energy storage systems with life cycle
cost as the objective and loss of power supply probability as constraints. (Eryilmaz et al., 2021) derived analytical
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expressions for power output distribution that explicitly incorporated reliability values of renewable energy
components, enabling theoretical assessment of long-term system performance.

Despite significant advances in sizing optimization, the maintenance planning dimension of hybrid systems
remains substantially underexplored. (Zhang et al., 2025) developed a maintenance cost model incorporating
corrective and preventive maintenance strategies alongside energy complementarity, yet the study adopted simplified
maintenance assumptions. (Dwivedi et al., 2024) focused on surface defect detection for monitoring renewable assets
but did not address maintenance scheduling optimization. The existing literature predominantly treats maintenance
actions as binary, "perfect" or "minimal" interventions, neglecting the realistic scenario of imperfect maintenance, in
which component reliability is only partially restored. Furthermore, current approaches fail to adaptively integrate
degradation history with maintenance effectiveness to optimize maintenance schedules under the dynamic operating
conditions characteristic of the Nigerian environment.

To address these limitations, the present study introduces an enhanced maintenance optimization framework that
extends the previous sequential production—maintenance model by incorporating an imperfect maintenance
mechanism based on the virtual-age concept. Each maintenance action partially restores component reliability, with
an impact factor () that represents the effectiveness of the action. This a-based formulation allows quantifying the
degree of restoration, bridging the gap between idealized “as-good-as-new” and “as-bad-as-old” assumptions. It thus
provides a more realistic assessment of system reliability and cost performance. These enable an adaptive maintenance
planning schedule under varying degradation conditions. By embedding this virtual-age model into the hybrid
system’s reliability evaluation, the proposed approach captures both degradation history and maintenance
effectiveness, thereby improving decision accuracy and cost optimization.

In summary, this work contributes:

1) An integrated production—maintenance optimization scheme for hybrid solar—wind systems,
(i1) An imperfect-maintenance reliability model governed by the impact factor o, and.
(iii) An adaptive cost-reliability optimization framework that balances preventive and predictive

maintenance actions.

The rest of the paper is organized as follows: the next section presents the problem description; this is followed by
the mathematical modelling; then the maintenance and optimization strategy; the results discussion is then presented;
and the last section concludes the study.

PROBLEM DESCRIPTION

Hybrid renewable energy systems combining solar PV and wind turbines present a practical solution to Nigeria’s
persistent energy deficit. However, the harsh and variable climatic conditions in sites such as the Northern part of
Nigeria accelerate component degradation, making maintenance planning a critical challenge. Conventional periodic
maintenance fails to account for partial restoration effects, leading to recurrent reliability losses. This study, therefore,
develops a cost-optimized maintenance framework incorporating an a-based virtual-age model to represent imperfect
repairs, enabling realistic reliability restoration and adaptive scheduling for Nigerian hybrid solar—wind installations.

MATHEMATICAL MODELLING

This section presents the mathematical modelling for the hybrid system, outlining the production and maintenance
modelling formulation.

Production Forecast Using Artificial Neural Network

For efficient operation and maintenance scheduling, hybrid solar-wind generation forecasts must be accurate. In
this study, data on sun irradiance, wind speed, and ambient temperature are used to estimate real-time power output
using an Artificial Neural Network (ANN). The network uses Mean Squared Error (MSE) to minimize prediction
error and consists of several hidden layers with ReLU activation. Adaptive reliability restoration is enabled within the
hybrid system's optimization framework by using the projected power profile as input to the a-based maintenance
model, which links production intensity to component degradation.
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Maintenance Modelling

Production outcomes and maintenance planning are sequentially integrated in this study. Since production intensity
significantly impacts component dependability and failure behavior, the model accounts for real-time operational and
environmental data. The ANN/LSTM model's estimated power output directly affects the rate of degradation and the
level of maintenance. The effectiveness of each intervention is represented by a restoration impact factor (a),
introduced because each maintenance action only partially restores reliability. To keep maintenance decisions aligned
with the system's state, the model dynamically adjusts o values based on production and operational conditions. This
integration reduces unplanned downtime and improves overall performance.

Virtual-age Dynamics (imperfect repair)

The degradation and subsequent restoration of a component after maintenance can be represented through the
virtual-age concept, initially proposed by (Kijima, 1989). In this approach, the virtual age reflects the effective
accumulated degradation of a component, rather than its chronological age. After a maintenance action, the virtual
age is partially reduced according to the impact (or restoration) factor.

a €[0,1]

This factor quantifies the repair's effectiveness. Where a perfect repair corresponds to o =1 (the component
becomes as good as new), while 0=0 represents minimal maintenance with no performance restoration. The imperfect
repair from different literature ((Kijima, 1989); (Doyen & Gaudoin, 2004); (Dijoux, 2009); (Finkelstein & Cha,
2022)), formulated the post-maintenance virtual age as:

vi(tm*) = (1 — o) X v;(ty, ") ()

Where: v;(t,,,”) and v;(t,,* ) denote the virtual age immediately before and after the maintenance event at time
tn, respectively.

Reliability Modelling

The solar and wind subsystems are configured in a parallel configuration. This is to enhance redundancy in the
hybrid system, so we configured the photovoltaic (PV) panels and an inverter in series to form the solar subsystem.
Similar to this, we considered the main shaft, gearbox, and generator for the wind turbine subsystem in the same
configuration. The component reliability is modeled using the Weibull distribution function (Ghodrati et al., 2012),
where after each maintenance, the reliability is updated using the new virtual age. This is expressed as:

v; Bi 2
Rl(t) = exp (_( l/rli) ) ( )
Where: f; and n; are the shape and scale Weibull parameters for each component, respectively.
RUL Prediction Using ANN

To accurately predict the Remaining Useful Life (RUL) of hybrid system components, a dynamic LSTM-based
Artificial Neural Network (ANN) is implemented. The model employs a dual-layer LSTM architecture (64—32 units)
to capture temporal degradation patterns of each component. To enhance learning and improve predictive maintenance
accuracy, the virtual age v;and the most recent restoration factor (a;) are incorporated as additional input features.
The LSTM undergoes online updates after each maintenance action using the newly observed a;and reliability values.
By integrating these auxiliary features, the model dynamically adapts its RUL predictions to reflect partial reliability
restoration following each maintenance event, thereby improving both prediction accuracy and decision
responsiveness. We compute the expected remaining useful life of a component with virtual age v using the Weibull
mean-residual-life formula (closed form via the upper incomplete Gamma function) as commonly applied in RUL
studies ((Y. Wang et al., 2021); (Ghodrati et al., 2012)):

RUL;(v) = %exp <<%)BL>F<%'<(%)BL>> 3)
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Where I'(a, x) is the upper incomplete gamma function.

This formulation represents the expected remaining useful life of a component with virtual age v;, enabling a direct
and efficient link between the degradation state estimated by the LSTM and the reliability update process governed
by the impact factor «o;.

Maintenance Cost Function Modelling

The proposed model unifies preventive, predictive, and corrective maintenance expenses within a single cost-
optimization framework. Preventive maintenance costs are evaluated using component reliability indices to sustain
the desired system uptime, while LSTM-based RUL forecasts guide predictive maintenance costs to ensure timely,
condition-based interventions. An impact factor characterizes each maintenance action (q;), representing the
restoration intensity and directly influencing both cost and post-maintenance reliability. Higher «;values correspond
to more comprehensive restorations, leading to higher immediate expenses but reduced future failure risks. The
corrective maintenance cost component accounts for unscheduled failures despite preventive and predictive
interventions. Collectively, these costs define the total maintenance cost (Cy,;) over the planning horizon:

Min, Cry = Cp X Np + Ny X Cpy + Ce X @y (N, Npy-) 4
(NprNp)

The average number of failures @y, (Np, Npr) despite maintenance actions is evaluated using:

Np or Npr—l At At (5)
(phy(Np,Npr) = Z [ Mg () dt] +f Ani () dt
k=0 0 Np or Np,.T
Where
—dR,(t)
i (t) = %

The preventive maintenance cost Cpis expressed as
_ fix var
CG=0C""+C" Xa

C,""" is the variable cost in relation to o and C,” % js the fixed cost

N, is the total number of preventive maintenance

Ny, is the total number of predictive maintenance actions

CpyrlIs the cost of predictive maintenance

C. is the cost of corrective maintenance

To ensure the system is always sufficiently reliable throughout the horizon.

Rhy(t) = Rmin
MAINTENANCE PLANNING POLICY

This section presents the operational framework of the proposed maintenance optimization model for the hybrid
solar—wind system. The model minimizes the total maintenance cost over a five-year horizon while ensuring system
reliability remains above a predefined threshold. Maintenance actions include preventive, predictive, and corrective
interventions, each characterized by a restoration factor (o;) that governs post-maintenance reliability. Preventive
maintenance is scheduled at fixed intervals, while predictive actions are triggered when component RULSs fall below
a threshold. The model iteratively adjusts maintenance timing and a-values, updating virtual ages and reliability to
identify the configuration that minimizes total cost while maintaining system reliability.
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NUMERICAL EXAMPLE AND RESULTS DISCUSSION

To validate the proposed hybrid production—maintenance optimization model, a case study was conducted using
real operational data from Jigawa, Nigeria (12.985531° N, 7.617144° E). Environmental inputs, including solar
irradiance, wind speed, and ambient temperature, were obtained from the NASA POWER database for the 2019-2024
period. These variables serve as inputs to the hybrid solar—wind energy production model, enabling a realistic
simulation of monthly power output. The predicted production intensity directly influences component degradation
within the maintenance framework. Maintenance and degradation data were collected over a five-year horizon,
providing 60 time steps per component. The dataset includes normalized operational covariates, such as temperature,
voltage fluctuations, and vibration, used to train the LSTM model for Remaining Useful Life (RUL) prediction.
Component reliability was modeled using the Weibull distribution with a virtual-age formulation, where the impact
factor governs maintenance restoration o . This integration of real environmental and operational data ensures that
both production estimation and maintenance optimization reflect the actual behavior of the hybrid system under
Nigerian climatic conditions.

MAINTENANCE RESULTS DISCUSSION

Figure 1 illustrates the variation of total maintenance cost with respect to the number of preventive maintenance
cycles (N,) over the 60-month planning horizon. The results exhibit a U-shaped cost pattern, indicating the trade-off
between frequent scheduled interventions and the accumulation of corrective repairs. The optimal configuration occurs
at N, = 5, corresponding to preventive actions every 12 months, with a minimum total cost of approximately
€194,000. This configuration achieves a 16% reduction compared to the minimal preventive case for N, = 1 and over
35% savings relative to excessive scheduling 60 preventive actions. The observed minimum arises from the balanced
coordination between preventive and predictive actions, where the a-based restoration factor dynamically adjusts the
level of component recovery after each maintenance event. This adaptive integration ensures that reliability remains
above the threshold, while controlling unnecessary maintenance intensity, thereby delivering a cost-optimal and
reliability-compliant maintenance plan for the hybrid solar—wind system operating under Nigerian environmental
conditions.

Total Maintenance Cost by Preventive Action Frequency
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FIGURE 1. Total Maintenance Cost Analysis

Figure 2 illustrates the maintenance schedule with restoration (a) for each hybrid subsystem component over the
planning horizon. The results reveal that the generator and rotor shaft underwent the most frequent predictive
interventions, reflecting their mechanical exposure and degradation sensitivity to production rate and fluctuating wind
conditions. The inverter and PV modules were primarily maintained through preventive maintenance cycles every 12
months, aligned with electrical reliability thresholds. The gearbox exhibited both periodic preventive actions and a
late predictive intervention at period 58 with (a = 0.2), demonstrating the model’s ability to implement minimal
restorative efforts when degradation is detected near the horizon. Overall, the variation in a values (0.2—0.9) across
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time supports the imperfect maintenance framework, in which restoration intensity is condition-dependent rather than
constant. This adaptive scheduling effectively synchronizes the LSTM-based RUL predictions with the Weibull-
derived reliability profiles, minimizing over-maintenance while ensuring system reliability remains above the
operational threshold throughout the planning period.

Maintenance Schedule and Restoration Intensity («)

Generator e ® ] @ ® ® ® ® ® [ ] e @
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FIGURE 1. Maintenance Schedule
Sensitivity Analysis

A sensitivity analysis was conducted to assess the influence of corrective maintenance (CM) cost on the optimal
maintenance configuration. As the CM cost increased from €4,000 to €11,000, the model shifted toward more
preventive actions and fewer predictive interventions, as shown in Table 1. This adaptive transition reflects the
model’s capacity to balance reliability assurance against economic penalties, demonstrating that higher CM costs
incentivize earlier, preventive actions. The total maintenance cost consequently increased from €20,831 to €43,987,
highlighting the importance of optimizing cost structures under uncertain economic conditions.

TABLE 1. Corrective Cost Analysis

Correct cost (€) Preventive actions  Predictive actions Total Cost (€)
4,000 5 26 20,831
7,000 6 24 31,344
11,000 10 15 43,987

A subsequent sensitivity analysis confirmed that the proposed a-based model remains robust to variations in
corrective cost, adaptively shifting between preventive and predictive emphasis to sustain economic optimality across
diverse maintenance scenarios.

CONCLUSION

This study developed an integrated production—maintenance optimization framework for a hybrid solar—-wind
energy system operating under Nigerian climatic conditions. The model combined Weibull-based reliability analysis,
virtual-age restoration modeling, and LSTM-driven Remaining Useful Life (RUL) prediction, with an impact factor
() introduced to quantify imperfect maintenance effects. By dynamically linking production intensity to degradation
behavior, the framework enables adaptive scheduling of preventive and predictive actions that maintain reliability
above the operational threshold while minimizing cost.

Results demonstrated that the optimal configuration occurs at five preventive actions and twenty-one predictive
interventions, achieving a total maintenance cost of approximately €194,000 and ensuring sustained system reliability.
The sensitivity analysis further confirmed that increasing corrective maintenance cost drives the strategy toward more
preventive actions, reflecting the model’s capacity to adapt to economic uncertainty. The a-based imperfect restoration
mechanism successfully captured partial reliability recovery, preventing excessive maintenance while avoiding
degradation accumulation.
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Overall, the proposed approach delivers a cost-effective, reliability-aware, and condition-responsive maintenance
strategy for hybrid renewable systems. It offers a practical decision-support tool for operators in resource-constrained
environments such as Nigeria, where fluctuating environmental and economic conditions necessitate adaptive
maintenance planning. Future work will extend this framework to include multi-objective optimization, considering
energy production, environmental impact, and stochastic reliability factors to further enhance system resilience and
sustainability
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