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Abstract. This paper presents an integrated framework for production and maintenance optimization in a hybrid solar–wind energy 

system under Nigerian climatic conditions. The approach couples power generation forecasting with reliability-driven maintenance 

scheduling to minimize life-cycle cost while ensuring operational reliability. Power output is predicted using an Artificial Neural 

Network (ANN), while component degradation is modeled through the Weibull reliability function incorporating a virtual age 

formulation. A restoration impact factor (α) is introduced to represent imperfect maintenance, quantifying partial reliability 

recovery after each intervention. Remaining Useful Life (RUL) is predicted using an LSTM-based model trained on normalized 

operational covariates and updated online after each maintenance event. Results over a 60-month horizon identify the optimal 

strategy as five preventive and twenty-one predictive maintenance actions, achieving a total cost of €194,000 and maintaining 

system reliability above a threshold. Sensitivity analysis shows that increasing corrective maintenance cost shifts the optimal plan 

toward preventive dominance, confirming the model’s adaptive behavior. The proposed α-based framework provides a practical, 

data-driven tool for reliability-centered maintenance planning in hybrid renewable systems, offering improved cost efficiency and 

resilience in variable operating environments. 

INTRODUCTION 

The escalating concerns over rising carbon emissions and their impact on global temperature trends have 

intensified the urgency to transition toward sustainable energy solutions. (Senthilkumar & Jayasankar, 2026). 

Renewable energy sources, particularly solar and wind, have emerged as viable alternatives that can significantly 

reduce dependence on fossil fuels while mitigating environmental degradation. However, the inherent intermittency 

of individual renewable sources poses substantial challenges to power system reliability. To address this limitation, 

hybrid solar–wind systems have gained considerable attention due to their complementary operational characteristics: 

solar energy peaks during daylight hours while wind energy often exhibits stronger generation during evening and 

night periods, thereby reducing overall intermittency and enhancing system reliability. 

The optimal sizing of hybrid solar–wind systems has been extensively investigated through various optimization 

methodologies. (Senthilkumar & Jayasankar, 2026) employed the secretary bird optimization algorithm to minimize 

the cost of energy and loss of power supply probability for stand-alone hybrid PV/wind/battery systems. (Akhtari & 

Karlström, 2025) demonstrated that levelized costs for optimized systems range between 0.16 and 0.48 $/kWh when 

wind energy is included, compared to 0.44–0.63 $/kWh without wind, highlighting the economic advantage of hybrid 

configurations under varying meteorological conditions. (Winsly et al., 2025) applied HOMER PRO to achieve 95% 

renewable penetration with a levelized cost of 0.040 $/kWh by integrating solar, wind, and biomass sources. (Gou et 

al., 2024) investigated capacity configuration optimization for hybrid renewable energy systems with concentrating 

solar power, determining an optimal VRE sizing of 4000 MW solar and 1000 MW wind. (Sadeghibakhtiar et al., 2024) 

pioneered a dual-objective optimization approach that simultaneously considered reliability and system costs, 

employing a genetic algorithm and NSGA-II to optimize photovoltaic panel area, wind turbine specifications, and 

battery capacity while accounting for component availability through failure and repair rates. (C. Wang et al., 2023) 

incorporated component reliability into capacity optimization using sequential Monte Carlo simulation to model fault 

probabilities of wind turbines and photovoltaic generators, optimizing hybrid energy storage systems with life cycle 

cost as the objective and loss of power supply probability as constraints. (Eryilmaz et al., 2021) derived analytical 
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expressions for power output distribution that explicitly incorporated reliability values of renewable energy 

components, enabling theoretical assessment of long-term system performance. 

Despite significant advances in sizing optimization, the maintenance planning dimension of hybrid systems 

remains substantially underexplored. (Zhang et al., 2025) developed a maintenance cost model incorporating 

corrective and preventive maintenance strategies alongside energy complementarity, yet the study adopted simplified 

maintenance assumptions. (Dwivedi et al., 2024) focused on surface defect detection for monitoring renewable assets 

but did not address maintenance scheduling optimization. The existing literature predominantly treats maintenance 

actions as binary, "perfect" or "minimal" interventions, neglecting the realistic scenario of imperfect maintenance, in 

which component reliability is only partially restored. Furthermore, current approaches fail to adaptively integrate 

degradation history with maintenance effectiveness to optimize maintenance schedules under the dynamic operating 

conditions characteristic of the Nigerian environment. 

To address these limitations, the present study introduces an enhanced maintenance optimization framework that 

extends the previous sequential production–maintenance model by incorporating an imperfect maintenance 

mechanism based on the virtual-age concept. Each maintenance action partially restores component reliability, with 

an impact factor (α) that represents the effectiveness of the action. This α-based formulation allows quantifying the 

degree of restoration, bridging the gap between idealized “as-good-as-new” and “as-bad-as-old” assumptions. It thus 

provides a more realistic assessment of system reliability and cost performance. These enable an adaptive maintenance 

planning schedule under varying degradation conditions. By embedding this virtual-age model into the hybrid 

system’s reliability evaluation, the proposed approach captures both degradation history and maintenance 

effectiveness, thereby improving decision accuracy and cost optimization. 

In summary, this work contributes: 

(i) An integrated production–maintenance optimization scheme for hybrid solar–wind systems, 

(ii) An imperfect-maintenance reliability model governed by the impact factor α, and. 

(iii) An adaptive cost-reliability optimization framework that balances preventive and predictive 

maintenance actions.  

The rest of the paper is organized as follows: the next section presents the problem description; this is followed by 

the mathematical modelling; then the maintenance and optimization strategy; the results discussion is then presented; 

and the last section concludes the study. 

PROBLEM DESCRIPTION 

Hybrid renewable energy systems combining solar PV and wind turbines present a practical solution to Nigeria’s 
persistent energy deficit. However, the harsh and variable climatic conditions in sites such as the Northern part of 
Nigeria accelerate component degradation, making maintenance planning a critical challenge. Conventional periodic 
maintenance fails to account for partial restoration effects, leading to recurrent reliability losses. This study, therefore, 
develops a cost-optimized maintenance framework incorporating an α-based virtual-age model to represent imperfect 
repairs, enabling realistic reliability restoration and adaptive scheduling for Nigerian hybrid solar–wind installations. 

MATHEMATICAL MODELLING 

This section presents the mathematical modelling for the hybrid system, outlining the production and maintenance 
modelling formulation. 

 Production Forecast Using Artificial Neural Network  

For efficient operation and maintenance scheduling, hybrid solar-wind generation forecasts must be accurate. In 
this study, data on sun irradiance, wind speed, and ambient temperature are used to estimate real-time power output 
using an Artificial Neural Network (ANN). The network uses Mean Squared Error (MSE) to minimize prediction 
error and consists of several hidden layers with ReLU activation. Adaptive reliability restoration is enabled within the 
hybrid system's optimization framework by using the projected power profile as input to the α-based maintenance 
model, which links production intensity to component degradation. 
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Maintenance Modelling 

Production outcomes and maintenance planning are sequentially integrated in this study. Since production intensity 
significantly impacts component dependability and failure behavior, the model accounts for real-time operational and 
environmental data. The ANN/LSTM model's estimated power output directly affects the rate of degradation and the 
level of maintenance. The effectiveness of each intervention is represented by a restoration impact factor (α), 
introduced because each maintenance action only partially restores reliability. To keep maintenance decisions aligned 
with the system's state, the model dynamically adjusts α values based on production and operational conditions. This 
integration reduces unplanned downtime and improves overall performance. 

Virtual-age Dynamics (imperfect repair) 

 

The degradation and subsequent restoration of a component after maintenance can be represented through the 

virtual-age concept, initially proposed by (Kijima, 1989). In this approach, the virtual age reflects the effective 

accumulated degradation of a component, rather than its chronological age. After a maintenance action, the virtual 

age is partially reduced according to the impact (or restoration) factor. 

𝛼 ∈ [0,1] 
This factor quantifies the repair's effectiveness. Where a perfect repair corresponds to α =1 (the component 

becomes as good as new), while α=0 represents minimal maintenance with no performance restoration. The imperfect 

repair from different literature ((Kijima, 1989); (Doyen & Gaudoin, 2004); (Dijoux, 2009); (Finkelstein & Cha, 

2022)), formulated the post-maintenance virtual age as: 

 

 𝑣𝑖(𝑡𝑚
+ ) = (1 − α𝑖) × 𝑣𝑖(𝑡𝑚

−) (1) 

 

Where: 𝑣𝑖(𝑡𝑚
−) and 𝑣𝑖(𝑡𝑚

+ ) denote the virtual age immediately before and after the maintenance event at time 

𝑡𝑚, respectively. 

Reliability Modelling 

The solar and wind subsystems are configured in a parallel configuration. This is to enhance redundancy in the 

hybrid system, so we configured the photovoltaic (PV) panels and an inverter in series to form the solar subsystem. 

Similar to this, we considered the main shaft, gearbox, and generator for the wind turbine subsystem in the same 

configuration. The component reliability is modeled using the Weibull distribution function (Ghodrati et al., 2012), 

where after each maintenance, the reliability is updated using the new virtual age. This is expressed as: 

 𝑅𝑖(𝑡) = exp (−(
𝑣𝑖

η𝑖
⁄ )

𝛽𝑖
) 

         (2) 

Where: 𝛽𝑖 and η𝑖 are the shape and scale Weibull parameters for each component, respectively. 

RUL Prediction Using ANN 

To accurately predict the Remaining Useful Life (RUL) of hybrid system components, a dynamic LSTM-based 

Artificial Neural Network (ANN) is implemented. The model employs a dual-layer LSTM architecture (64–32 units) 

to capture temporal degradation patterns of each component. To enhance learning and improve predictive maintenance 

accuracy, the virtual age 𝑣𝑖and the most recent restoration factor (α𝑖) are incorporated as additional input features. 

The LSTM undergoes online updates after each maintenance action using the newly observed α𝑖and reliability values. 

By integrating these auxiliary features, the model dynamically adapts its RUL predictions to reflect partial reliability 

restoration following each maintenance event, thereby improving both prediction accuracy and decision 

responsiveness. We compute the expected remaining useful life of a component with virtual age 𝑣 using the Weibull 

mean-residual-life formula (closed form via the upper incomplete Gamma function) as commonly applied in RUL 

studies ((Y. Wang et al., 2021); (Ghodrati et al., 2012)): 

 
𝑅𝑈𝐿𝑖(𝑣) =

η𝑖

𝛽𝑖

exp ((
𝑣𝑖

η𝑖

)
𝛽𝑖

) Γ (
1

𝛽𝑖

, ((
𝑣𝑖

η𝑖

)
𝛽𝑖

)) 
          (3) 
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Where Γ(a, x) is the upper incomplete gamma function. 

This formulation represents the expected remaining useful life of a component with virtual age 𝑣𝑖, enabling a direct 

and efficient link between the degradation state estimated by the LSTM and the reliability update process governed 

by the impact factor α𝑖. 

Maintenance Cost Function Modelling 

The proposed model unifies preventive, predictive, and corrective maintenance expenses within a single cost-

optimization framework. Preventive maintenance costs are evaluated using component reliability indices to sustain 

the desired system uptime, while LSTM-based RUL forecasts guide predictive maintenance costs to ensure timely, 

condition-based interventions. An impact factor characterizes each maintenance action (α𝑖), representing the 

restoration intensity and directly influencing both cost and post-maintenance reliability. Higher α𝑖values correspond 

to more comprehensive restorations, leading to higher immediate expenses but reduced future failure risks. The 

corrective maintenance cost component accounts for unscheduled failures despite preventive and predictive 

interventions. Collectively, these costs define the total maintenance cost (𝐶𝑇𝑀) over the planning horizon: 

 𝑀𝑖𝑛 ⏟
(𝑁𝑝𝑟,𝑁𝑝)

𝐶𝑇𝑀 = 𝐶𝑝 × 𝑁𝑝 + 𝑁𝑝𝑟 × 𝐶𝑝𝑟 + 𝐶𝑐 × 𝜑ℎ𝑦(𝑁𝑝, 𝑁𝑝𝑟) (4) 

 

The average number of failures φℎ𝑦(𝑁𝑝, 𝑁𝑝𝑟) despite maintenance actions is evaluated using: 

 

 

φℎ𝑦(𝑁𝑝, 𝑁𝑝𝑟) = ∑ [∫ 𝜆ℎ,𝑘(𝑡)
∆t

0

 dt] + ∫ 𝜆ℎ,𝑘(𝑡)
H.Δt

N𝑝 𝑜𝑟 N𝑝𝑟.T

dt

N𝑝 or N𝑝𝑟−1

k=0

 

(5) 

Where  

𝜆ℎ,𝑘(𝑡) =
−𝑑𝑅ℎ𝑦(𝑡)

𝑑𝑡
 

The preventive maintenance cost 𝐶𝑝is expressed as 

𝐶𝑝 = 𝐶𝑝
𝑓𝑖𝑥 + 𝐶𝑝

𝑣𝑎𝑟 × α 

 

𝐶𝑝
𝑣𝑎𝑟 is the variable cost in relation to α and 𝐶𝑝

𝑓𝑖𝑥 is the fixed cost 

𝑁𝑝 is the total number of preventive maintenance 

𝑁𝑝𝑟 is the total number of predictive maintenance actions  

𝐶𝑝𝑟Is the cost of predictive maintenance 

𝐶𝑐 is the cost of corrective maintenance 

To ensure the system is always sufficiently reliable throughout the horizon. 

𝑅ℎ𝑦(𝑡) ≥  𝑅𝑚𝑖𝑛 

MAINTENANCE PLANNING POLICY 

This section presents the operational framework of the proposed maintenance optimization model for the hybrid 

solar–wind system. The model minimizes the total maintenance cost over a five-year horizon while ensuring system 

reliability remains above a predefined threshold. Maintenance actions include preventive, predictive, and corrective 

interventions, each characterized by a restoration factor (α𝑖) that governs post-maintenance reliability. Preventive 

maintenance is scheduled at fixed intervals, while predictive actions are triggered when component RULs fall below 

a threshold. The model iteratively adjusts maintenance timing and α-values, updating virtual ages and reliability to 

identify the configuration that minimizes total cost while maintaining system reliability. 
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NUMERICAL EXAMPLE AND RESULTS DISCUSSION 

To validate the proposed hybrid production–maintenance optimization model, a case study was conducted using 

real operational data from Jigawa, Nigeria (12.985531° N, 7.617144° E). Environmental inputs, including solar 

irradiance, wind speed, and ambient temperature, were obtained from the NASA POWER database for the 2019–2024 

period. These variables serve as inputs to the hybrid solar–wind energy production model, enabling a realistic 

simulation of monthly power output. The predicted production intensity directly influences component degradation 

within the maintenance framework. Maintenance and degradation data were collected over a five-year horizon, 

providing 60 time steps per component. The dataset includes normalized operational covariates, such as temperature, 

voltage fluctuations, and vibration, used to train the LSTM model for Remaining Useful Life (RUL) prediction. 

Component reliability was modeled using the Weibull distribution with a virtual-age formulation, where the impact 

factor governs maintenance restoration α . This integration of real environmental and operational data ensures that 

both production estimation and maintenance optimization reflect the actual behavior of the hybrid system under 

Nigerian climatic conditions. 

MAINTENANCE RESULTS DISCUSSION 

Figure 1 illustrates the variation of total maintenance cost with respect to the number of preventive maintenance 

cycles (𝑁𝑝) over the 60-month planning horizon. The results exhibit a U-shaped cost pattern, indicating the trade-off 

between frequent scheduled interventions and the accumulation of corrective repairs. The optimal configuration occurs 

at 𝑁𝑝 = 5, corresponding to preventive actions every 12 months, with a minimum total cost of approximately 

€194,000. This configuration achieves a 16% reduction compared to the minimal preventive case for 𝑁𝑝 = 1 and over 

35% savings relative to excessive scheduling 60 preventive actions. The observed minimum arises from the balanced 

coordination between preventive and predictive actions, where the α-based restoration factor dynamically adjusts the 

level of component recovery after each maintenance event. This adaptive integration ensures that reliability remains 

above the threshold, while controlling unnecessary maintenance intensity, thereby delivering a cost-optimal and 

reliability-compliant maintenance plan for the hybrid solar–wind system operating under Nigerian environmental 

conditions. 

 
FIGURE 1. Total Maintenance Cost Analysis 

Figure 2 illustrates the maintenance schedule with restoration (α) for each hybrid subsystem component over the 

planning horizon. The results reveal that the generator and rotor shaft underwent the most frequent predictive 

interventions, reflecting their mechanical exposure and degradation sensitivity to production rate and fluctuating wind 

conditions. The inverter and PV modules were primarily maintained through preventive maintenance cycles every 12 

months, aligned with electrical reliability thresholds. The gearbox exhibited both periodic preventive actions and a 

late predictive intervention at period 58 with (α = 0.2), demonstrating the model’s ability to implement minimal 

restorative efforts when degradation is detected near the horizon. Overall, the variation in α values (0.2–0.9) across 
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time supports the imperfect maintenance framework, in which restoration intensity is condition-dependent rather than 

constant. This adaptive scheduling effectively synchronizes the LSTM-based RUL predictions with the Weibull-

derived reliability profiles, minimizing over-maintenance while ensuring system reliability remains above the 

operational threshold throughout the planning period. 

 
FIGURE 1. Maintenance Schedule 

Sensitivity Analysis 

A sensitivity analysis was conducted to assess the influence of corrective maintenance (CM) cost on the optimal 

maintenance configuration. As the CM cost increased from €4,000 to €11,000, the model shifted toward more 

preventive actions and fewer predictive interventions, as shown in Table 1. This adaptive transition reflects the 

model’s capacity to balance reliability assurance against economic penalties, demonstrating that higher CM costs 

incentivize earlier, preventive actions. The total maintenance cost consequently increased from €20,831 to €43,987, 

highlighting the importance of optimizing cost structures under uncertain economic conditions. 

TABLE 1. Corrective Cost Analysis 

Correct cost (€) Preventive actions Predictive actions Total Cost (€) 

4,000 5 26 20,831 

7,000 6 24 31,344 

11,000 10 15 43,987 

 

A subsequent sensitivity analysis confirmed that the proposed α-based model remains robust to variations in 

corrective cost, adaptively shifting between preventive and predictive emphasis to sustain economic optimality across 

diverse maintenance scenarios. 

CONCLUSION 

This study developed an integrated production–maintenance optimization framework for a hybrid solar–wind 

energy system operating under Nigerian climatic conditions. The model combined Weibull-based reliability analysis, 

virtual-age restoration modeling, and LSTM-driven Remaining Useful Life (RUL) prediction, with an impact factor 

(α) introduced to quantify imperfect maintenance effects. By dynamically linking production intensity to degradation 

behavior, the framework enables adaptive scheduling of preventive and predictive actions that maintain reliability 

above the operational threshold while minimizing cost. 

Results demonstrated that the optimal configuration occurs at five preventive actions and twenty-one predictive 

interventions, achieving a total maintenance cost of approximately €194,000 and ensuring sustained system reliability. 

The sensitivity analysis further confirmed that increasing corrective maintenance cost drives the strategy toward more 

preventive actions, reflecting the model’s capacity to adapt to economic uncertainty. The α-based imperfect restoration 

mechanism successfully captured partial reliability recovery, preventing excessive maintenance while avoiding 

degradation accumulation. 
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Overall, the proposed approach delivers a cost-effective, reliability-aware, and condition-responsive maintenance 

strategy for hybrid renewable systems. It offers a practical decision-support tool for operators in resource-constrained 

environments such as Nigeria, where fluctuating environmental and economic conditions necessitate adaptive 

maintenance planning. Future work will extend this framework to include multi-objective optimization, considering 

energy production, environmental impact, and stochastic reliability factors to further enhance system resilience and 

sustainability 
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