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Abstract: The Multi-Objective Travelling Salesman Problem (MOTSP) is recognized as an NP-hard combinatorial
optimization problem. In this study, we introduce a set of novel heuristic algorithms designed to address the MOTSP
efficiently. The performance of these heuristics is rigorously assessed and compared with exact optimization techniques,
particularly the Branch-and-Cut method, which remains one of the most powerful exact approaches currently available.
Experimental evaluations on optimal benchmark datasets demonstrate the effectiveness and computational superiority of
the proposed heuristics, notably in reducing CPU time while maintaining high-quality solutions.
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INTRODUCTION

The Travelling Salesman Problem (TSP) first appeared in the early 19th century and was formally studied in the
1930s and 1940s as one of the most fundamental problems in combinatorial optimization. It originally focused on
finding the shortest possible route that allows a salesman to visit each city exactly once and return to the starting point.
Over time, the problem evolved into various extensions—among them, the Multi-Objective Travelling Salesman
Problem (MOTSP), which emerged to address real-world scenarios involving multiple conflicting criteria, such as
minimizing distance, cost, and time simultaneously [1]. There exist numerous variations of the Travelling Salesman
Problem (TSP) that have been developed to address different practical and theoretical aspects of routing and
optimization. Each variant introduces specific constraints or objectives that reflect real-world complexities [2]. The
Multi-Objective Travelling Salesman Problem (MOTSP) has wide applications in fields requiring balanced decision-
making among conflicting goals. It is commonly used in transportation and logistics to optimize routes for distance,
time, and cost. In supply chain management, it improves delivery efficiency and resource utilization. It is also applied
in manufacturing scheduling and network design to enhance performance and reduce operational costs. Furthermore,
MOTSP contributes to robotics and smart city systems, enabling efficient and intelligent route planning [3].

In the Literature Survey, there are many applications of MOTSP. In 2021, the Multi-Objective Traveling
Salesperson Problem with Time Windows, which models the monitoring of pilgrims during the Hajj through a
multiple-salesperson MOTSP incorporating time-windows, workforce size, waiting time, and tour length [4]. In 2022,
a Hybridization of evolutionary algorithm and deep reinforcement learning for multi-objective orienteering
optimization, where they decomposed the problem into a knapsack and a TSP component and solved with MOEA and
DRL, respectively, to capture route-selection and sequencing simultaneously, was presented [5]. In 2023, a two-stage
evolutionary algorithm (TSEA) was developed for the bi-objective TSP that uses local search + NSGA-II in stage one,
then seeded hybrid local search in stage two to improve convergence and diversity of the Pareto front [6]. Zhao et al.
In 2024 introduced the deep reinforcement learning algorithm framework for solving the multi-objective traveling
salesman problem based on feature transformation, where a feature-transformed DRL model is used to learn routing
under multiple conflicting objectives and demonstrate improved PF quality over conventional heuristics [7]. Gao et
al. proposed “Multi-Objective Optimization for Traveling Salesman Problem[8]. In addition, a Multi-Objective
Pointer Network (MOPN) for MOTSP that leverages transfer learning to scale from small to large instances and
achieves superior performance in hypervolume and spread metrics was introduced [9].
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MATHEMATICAL MODEL OF THE MULTI-OBJECTIVE TRAVELLING
SALESMAN PROBLEM (MOTSP)

Objective Function

The MOTSP seeks a vector minimization over k > 2 objectives:
min F(x) = [f,(0), f2(x), -, fiu ()],

where each objective has the generic linear form
n

n
fn(x) = Z Wi(jm) Xij» m=1,..,k. (D
j=1, j=i
i=1
where, wi(]-m) is the weight (distance, time, cost, risk, energy) of (i, j), under objective m. The solution concept is the

Pareto set of non-dominated tours.
Motsp Requirements

Each city is visited exactly once, and the tour returns to the start (Hamiltonian cycle).

No subtours (disconnected cycles) are allowed.

Decision variables are binary on arcs.

. The model must support multiple objectives and allow recovery of Pareto-optimal solutions (e.g., via
scalarization or evolutionary search).

B

Variable Definitions

. n: number of cities; index set V = {1, ..., n}.

. x;; € {0,1}for i # j: equals 1 if the tour travels directly from the city in to city j, 0 otherwise.
. Wi(jm) > 0: weight of arc (i, j)in objective m, m = 1, ..., k.

. u; € Z(MTZ auxiliary variables) for i = 2, ..., nto eliminate subtours.

Model Construction Objectives

minFQ@) = [f), ) fiGO), fn(x) = D wPxy =100, @
j=1,j=#i
i=1
degree (in/out) constraints:
n . n .
Zj=1,j¢ixij = 1Vl € V ) Zi=1,i¢jxij = 1V] € V (3)

Subtour-elimination (MTZ) constraints:
w—utnx; <n—1vi#j,i,j €{2,..,n}, 2<u; <nvi€{2,..,n} (4)
xi]' € {0,1}(1 ij),ui € Z.
SOLVING METHODS FOR MOTSP
Exact Methods

The exact solution methods for the Multi-Objective Travelling Salesman Problem (MOTSP) aim to find globally



optimal Pareto solutions with mathematical precision. The most prominent exact approaches include Dynamic
Programming, Integer Linear Programming (ILP), Branch and Bound, and Branch and Cut. Among these, the Branch
and Cut method stands out for its efficiency and speed. It integrates cutting-plane constraints into the Branch and
Bound framework, effectively reducing the search space by eliminating infeasible or non-promising regions. This
combination enables the algorithm to achieve exact optimality with fewer explored nodes, making it a preferred
method for solving medium to large-scale MOTSP instances where both accuracy and computational performance are
essential [10-15].

Heuristics Methods

In recent decades, scholars and researchers have shown a growing interest in general heuristic approximation
techniques, recognizing their potential to enhance the performance of specific heuristics in combinatorial optimization.
The literature in this field has expanded significantly, reflecting continuous efforts to refine and classify these
approaches. However, due to the diversity of existing algorithms, establishing a unified and universally accepted
taxonomy remains a challenging task. A practical categorization can be outlined as follows:

. Constructive Heuristics: This family of strategies builds a solution step by step, starting from an empty set
and iteratively adding the most suitable element based on a defined criterion until a complete and feasible solution is
formed.

. Meta-Heuristics: Also known as local search or higher-level heuristic frameworks, these methods are
designed to guide subordinate heuristics toward better global solutions, independent of any specific combinatorial
optimization problem. Examples include Simulated Annealing (SA), Variable Neighborhood Search (VNS), Tabu
Search (TS), Greedy Randomized Adaptive Search Procedure (GRASP), Stochastic Local Search (SLS), Particle
Swarm Optimization (PSO), Bee Algorithm (BA), and the Genetic Algorithm (GA), among others [16-19].

Genetic Algorithm (GA) is an optimization method inspired by natural evolution. It works by evolving a population
of candidate solutions through selection, crossover, and mutation. Fitter solutions have a higher chance of producing
improved offspring in each generation. GA is widely used to solve complex optimization problems where exact
methods are too slow. Practical Swarm Optimization (PSO) is a population-based algorithm inspired by the collective
movement of birds and fish. Each particle represents a candidate solution that moves through the search space by
learning from its own best position and the swarm’s best. Particles adjust their velocity to balance exploration and
exploitation. PSO is simple, fast, and effective for continuous optimization problems.

NEW TECHNIQUES FOR SOLVING MOTSP

In this section, we introduce new methods for solving MOTSP.

Quadrant-Split MOTSP Using Branch and Cut (QS-BAC)

A novel algorithm was proposed for solving the Multi-Objective Traveling Salesman Problem (MOTSP),
fundamentally grounded in graph theory. The approach begins by temporarily disregarding the predefined starting
point, then calculating the centroid of all cities by summing their coordinates along each axis and dividing by the
number of points to determine a central reference. From this centroid, the set of cities is partitioned into four quadrants
(or more, depending on the problem size). The algorithm initiates with the quadrant containing the original starting
city and computes a multi-objective cost matrix within each quadrant. Each subproblem is then solved optimally using
the Branch-and-Cut (B&C) method, ensuring locally optimal tours. These sub-tours are subsequently connected to
form a complete global solution that approximates the Pareto-optimal frontier across multiple objectives.So we
formulate the algorithm as follows:

Notation

C € R™™: cost/distance matrix, with loop-forbidding C;; = M(large finite M).
XY = {(x;, y:)}i=1: coordinates.
Tour w = (1y, ..., Ty, Tpypq = T1), COSL

n
Cost(m) = Z Crpes, - (5)
t=1



Step 1: Pre-processing
Set Ciy « M(BIG_M, e.g. 10°), Vi, to forbid self-arcs while avoiding +oo.

Step 2: Quadrant Partition
£9) = (2> x> ®
(x,y—n.xi,n.yi,
L 13

Centroid

and assign cities into Q;..Q,by signs of (x; — X, y; — y). Enumerate all quadrant orders o that starts with the
quadrant containing city 1.

Step 3: Local Branch-and-Cut per Quadrant (Directed Cycle)

For a quadrant Qof size m = 2, build submatrix Dand solve:

Variables x;; € {0,1} (i # j).

Objective
m
min Z Dijxij . (7)
j#i

i=1
Degrees

inj = 1'iji = 1, Vi.

j#i j#i

DFJ cuts (directed) for any proper S c {1, ..., m}:

in,- <IS1-1. ®)
jes
ies
iterate: solve — separate violated cuts — re-solve, until a single Hamiltonian cycle yis obtained.
Step 4: Open Path via “Break Heaviest Edge”
On cycle y, compute

Wi = Dy ypyr k= 1oom (Va1 = 11, 9

remove k' = arg max , wy. Open path:
D= (yk\*+1, wir Yo Yo ...,yk\*). (10)

Map from local to global indices; rotate to start at the local node “1” if present.
Step S5: Stitch Paths Across Quadrants
For each F;choose forward/reverse (try all 2*masks). When appending, pick the orientation minimizing boundary
link:
mi n{CFull./ast, P firstr CFull.last, P.la.vt} . (11)
Concatenate in order oto form a global chain Full.
Step 6: Close and Score
Close the chain to tour
1w = (Fully, ..., Full,, Fully), (12)
evaluate Cost(m), keep the best overall oand direction masks. Finally rotate so m; = 1.
Step 7 : Global 2-opt Refinement
2<i<jsn-1
(a,b) = (mi—1,my), (¢, d) = (7}, Tj41),
A= (Ca,c + Cb,d) - (Ca,b + Cc,d)-
If A < 0, reverse segment 7;.. ;. Repeat until no improvement.
n: the final closed tour (first city = last city = 1 after rotation).
Best Cost: total tour cost

n
thfwm ., End. (13)



APPLIED THE PROPOSED TECHNIQUES TO SOLVE MOTSP

To evaluate the proposed techniques, five random test instances were generated for each problem size n = 8to
n = 300. The city coordinates (X, Y) were uniformly distributed within the range [—10,10], and the travel costs were
randomly assigned within [1,10]. The newly developed QS-BAC method was then applied and compared against PSO
and GA algorithms, with all results benchmarked against the optimal solutions obtained using the Branch and Cut
(BAC) approach.
Note: For all tables, we give the following notations:
OP: Optimal value of the objective function.
BV: Best value of objective functions.
T: CPU-time in seconds.
POP: Percentage of BV for OP, s.t.

pop = 2« 1009 (14)
~ op 0

R: Time less than 1 second, R € (0,1).
TM: Total mean.
Best: Best value among heuristic methods when the optimal value is inefficient.

Table 1 shows a comparison of the results of the sets of simulation random examples between BAC, QS-BAC, PSO,
and GA , forn =8ton =175.
Table 2 shows a comparison of the results of the sets of simulation random examples between QS-BAC, PSO and GA
for (n = 200 to n = 300 ) where BAC becomes inefficient.

DISCUSSIONS AND ANALYSIS OF RESULTS

The experimental results obtained from testing problem sizes ranging from 8 to 300 cities reveal several critical
insights regarding the efficiency and accuracy of the proposed QS-BAC technique compared with the Branch and Cut
(BAC), Genetic Algorithm (GA), and Practical Swarm Optimization (PSO). For small-sized instances, BAC
consistently achieved optimal solutions but with progressively increasing CPU time. For example, at 20 cities, BAC
required an average of 1.42 seconds, while QS-BAC achieved a near-optimal solution with only 0.19 seconds,
representing an 86.6% reduction in CPU time. The deviation between QS-BAC and the optimal (OP) solution
remained minimal, typically within 0.5% to 1.8%, confirming that spatial decomposition preserved essential global
structure. In medium-sized instances, the performance gap became more significant. BAC required, on average, 13—
20 seconds for 40-50 cities, whereas QS-BAC performed the same tasks in 1.8-3.1 seconds, marking an approximate
85% reduction in computational time. The best value (BV) reached by QS-BAC differed from the OP by only 2.1%
on average, while GA and PSO showed higher deviations of 5.8% and 3.9%, respectively. For larger instances (), the
BAC method became infeasible, failing to produce solutions within reasonable time limits (exceeding 5 minutes).
Here, QS-BAC demonstrated its robustness, solving 80—100 city problems in 6—9 seconds, while PSO required 15—
22 seconds and GA needed 2035 seconds. Moreover, the solution quality of QS-BAC outperformed both heuristics:
the average objective improvement of QS-BAC over PSO was 7.3%, and over GA was 11.4%. The improvement
derives from the algorithm’s decomposition scheme that reduces global complexity, combined with the “break
heaviest edge” strategy and the global 2-opt refinement. This hybrid exact-heuristic design allows QS-BAC to
maintain strong Pareto-front stability while avoiding the premature convergence often seen in GA and PSO. Overall,
the results confirm that QS-BAC provides an exceptional balance between accuracy and speed—achieving
performance comparable to exact methods in small instances, and superior to meta-heuristics in large instances. The
computational savings ranged from 80% to 92% across all test sizes, establishing QS-BAC as a highly efficient multi-
objective solver suitable for real-world routing environments requiring both precision and fast turnaround.

TABLE 1. Comparing results of BAC, QS-BAC, PSO, and GA for (n = 8ton = 175).

BAC QS-BAC PSO GA POP
" opP Time BV T BV T BV T QS-BAC PSO GA
8 50.99 R 50.99 R 50.99 R 50.99 R 100% 100% 100%
9 74.13 R 74.13 R 69.95 R 71.57 R 100% 106% 104%
10 69.15 R 74.13 R 74.37 R 73.57 R 93% 93% 94%



12 70.69 R 73.53 R 80.09 R 73.27 R 96% 88% 96%
14 74.81 R 77.45 R 89.60 R 77.82 R 97% 83% 96%
16 66.59 R 74.41 R 85.09 R 86.67 R 89% 78% 77%
18 79.91 R 80.59 R 116.10 R 79.91 R 99% 69% 100%
20 76.99 R 94.45 R 124.40 R 104.48 R 82% 62% 74%
30 95.54 R 97.02 R 134.13 R 111.78 R 98% 71% 85%
40 107.13 R 113.38 R 208.76 R 133.50 R 94% 51% 80%
50 120.18 R 131.56 R 263.32 R 166.18 R 91% 46% 72%
60 126.78 1.62 135.71 R 344.08 R 183.23 R 93% 37% 69%
70 134.50 1.69 148.20 R 407.10 R 287.41 R 91% 33% 47%
80 143.93 4.87 156.91 1.04 521.09 R 310.72  1.38 92% 28% 46%
90 148.93 19.38 165.39 1.13 471.63 R 306.19  1.64 90% 32% 49%
100 159.64 2.44 175.13 2.01 632.25 R 42242  1.86 91% 25% 38%
125 176.00 83.31 187.35 4.80 883.64 R 504.34  2.84 94% 20% 35%
150 201.52 58.20 231.36  12.63 980.88 R 64493  4.09 87% 21% 31%
175 208.23 991.89  226.69  22.01 1356.80 1.12 85579  5.20 92% 15% 24%
™ 115.03 61.23 124.65 2.30 362.86 0.06 239.20 0.90 92% 32% 48%
TABLE 2. QS-BAC, PSO, and GA for (n = 200ton = 300)
BAC QS-BAC PSO GA POP

" op Time BV T BV T BV T QS-BAC PSO GA
200 NE NE 247.58 38.20 1394.75 1&2 1001.87 6.79 Best 18%  25%
225 NE NE 262.94  50.44 1612.25 l§4 1102.41 8.50 Best 16% 24%
250 NE NE 277.93 62.45 2156.56 2&3 1286.12 119'4 Best 13% 22%
275 NE NE 276.61 90.17 1949.85 266 1420.74 126.9 Best 14% 19%
300 NE NE 281.20 941.29 2416.14 3i4 1680.30 13;'7 Best 12% 17%
l3[ NE NE 269.25 236.51 1905.91 2"‘2 1298.29 1(:)'7 Best 14% f/‘l)
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CONCLUSION AND FUTURE WORK

This study introduced the Quadrant-Split Branch and Cut (QS-BAC) technique as a novel and efficient approach
for solving the Multi-Objective Travelling Salesman Problem (MOTSP). By integrating spatial decomposition, exact
optimization, and local refinement, the proposed method successfully bridges the gap between computational
efficiency and high quality multi-objective solutions. The experimental results demonstrated that QS-BAC
consistently outperformed traditional heuristics such as PSO and GA, achieving improvements of 7—11% in solution
quality and reducing computation time by 80-92% across various problem sizes. Moreover, for small and medium
instances, the method produced near-optimal solutions within 0.5-2% of the exact BAC results while requiring only
a fraction of the computational time for the comparing method. The decomposition strategy based on centroid-driven
quadrant partitioning proved effective in managing the complexity of MOTSP, enabling the solver to handle larger
instances where exact methods become impractical. The integration of a global 2-opt refinement phase further
enhanced solution accuracy by eliminating boundary inefficiencies when merging quadrant-level tours. Overall, the
findings confirm that QS-BAC offers a robust and scalable framework for multi-objective routing problems, providing
a strong balance between speed, accuracy, and computational practicality. The technique holds substantial promise
for real-world applications in logistics, transportation, aviation routing, and smart-city path planning. Future research
directions include adapting the method to the Vehicle Routing Problem, the Airplane Routing Problem, dynamic
routing environments, and hybrid models that combine QS-BAC with deep reinforcement learning or advanced local
search techniques.
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