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Abstract:  This research aims to study the tribological properties of polymethyl methacrylate (PMMA) nanocomposites 

reinforced with nano glass waste powders at different volumetric ratios (1%, 3%, 5%, 7%, and 9%). Samples were 

prepared using ultrasonic sonication to ensure homogeneous nanoparticles dispersion within the polymer matrix. Friction 

and wear tests were conducted using the pin-on-disc method under a load of 25 N for 15 minute. The results showed a 

gradual decrease in volume loss, wear rate, and coefficient of friction as well as wear coefficient with increasing nano 

glass waste powder content. The best values were recorded at a volumetric fraction of 9%, resulting from the formation 

of a smooth surface layer that reduces direct contact between the sample and the hardened ground stainless steel disc with 

hardness (55HRC), in addition to increasing hardness and uniform stress distribution within the PMMA matrix. These 

results confirm the efficiency of PMMA/glass nanocomposites as wear-resistant nanomaterials suitable for tribology and 

mechanical applications. 
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INTRODUCTION 

Polymethyl methacrylate (PMMA) is one of the most important transparent thermoplastic polymers used in 

engineering, medical, and optical applications, such as optical lenses, dental bases, protective coatings, and 

transparent sheets, low density, ease of shaping, and acceptable chemical stability. However, PMMA's performance 

under dry slip conditions is typically characterized by a high wear rate and a relatively high coefficient of friction, 

which reduces its suitability for applications involving repeated surface contact or continuous mechanical loads [1]. 

Tribology focuses on studying the interaction of contacting surfaces in terms of friction, wear, and lubrication. It 

forms the basis for developing composite materials capable of withstanding slip and load conditions for longer 

periods while minimizing mechanical and energy losses. Recent review studies have shown that polymer 

nanocomposites are among the most effective systems for improving tribological behavior. Nanoparticles and 

microsolids play a pivotal role in reducing the coefficient of friction and wear rate by increasing surface hardness 

and improving stress distribution within the polymer matrix [2]. 

Specifically for PMMA, several studies have shown that reinforcing it with various nanoparticles or 

microparticles, such as SiO2, TiO2, multi-walled carbon nanotubes (MWCNTs), or natural microparticles, improves 

both its mechanical and tribological properties. For example, Farhan et al. demonstrated that reinforcing PMMA 

with TiO2 –ZnO nanoparticles at low volume fractions, resulted in a significant reduction in wear rate and 

coefficient of friction using the pin-on-disc test, with sonication used to improve dispersion and reduce 

agglomeration [3]. EJET research, Fouly et al. also demonstrated that adding small proportions of cellulose 

nanocrystals (CNC) to PMMA improved its toughness and surface wear resistance, reflecting the sensitivity of the 

tribological properties to the nature, content, and dispersion pattern of the filler within the matrix [4]. 

Furthermore, a recent study by Fouly et al. indicates that reinforcing PMMA with fillers from natural sources 

(such as miswak powder or plant residues) resulted in a simultaneous improvement in hardness and wear resistance. 

This confirms that the principle of reinforcing PMMA with hard fillers, regardless of whether synthetic or natural, 

depends primarily on the nature of the surface interaction, the quality of the dispersion, and the degree of 

compatibility between the matrix and the filler. Egyptian Journal of Chemistry [5]. In a parallel vein, Patel et al. 

demonstrated that PMMA composites reinforced with multi-walled carbon nanotubes (MWCNTs) exhibited 

significant reductions in the coefficient of friction and wear rate at low loading ratios (approximately 0.5 wt.%), 

noting that exceeding a certain content threshold may lead to clumping and a loss of some of the improvement [6, 

7]. 
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Regarding the role of glass as a solid filler, numerous studies have focused on the use of glass fibers or glass 

granules in strengthening various resins and polymers. The results showed that the presence of glass, whether in the 

form of fibers or powders, can enhance wear resistance and improve surface stability under dry slip, provided the 

filler content and composite preparation method are controlled. For example, Padgurskas et al. showed that resins 

reinforced with glass powders in precise ratios exhibited a lower coefficient of friction and improved wear resistance 

compared to pure resin, especially when using fine glass particles or glass microbubbles to achieve a homogeneous 

distribution within the matrix [6]. 

Despite this progress, studies on PMMA, based nanocomposites reinforced with ordinary glass powders remain 

less numerous compared to other reinforcement systems (such as SiO2, TiO2, MWCNTs, or glass fibers), 

particularly when a wide range of particle sizes and precise sonication dispersion processing are employed, with 

tribological behavior evaluated using the pin-on-disc method under standard dry - slip conditions. Existing studies 

often focus on improving mechanical properties or dental applications, while more recent work attempts to combine 

mechanical and tribological properties simultaneously. However, this research does not adequately cover the effect 

of gradually increasing the volumetric content of glass powder to moderate percentages (7–9%) in the PMMA 

matrix [7]. 

Based on the above, this research aims to study the abrasive properties of polymethyl methacrylate (PMMA) 

nanocomposites reinforced with ordinary glass powders. This is achieved by preparing samples with different 

volumetric percentages of glass powder (1%, 3%, 5%, 7%, and 9%) using ultrasonic sonication to ensure 

homogeneous dispersion within the polymer matrix. The coefficient of friction and wear coeffeicint are then 

measured using the pin-on-disc method under specific loads and test times. The work focuses on determining the 

optimal volumetric fraction of glass powder that achieves the best tribological performance, interpreting the possible 

physical mechanisms for improving the frictional and abrasion behavior of such composites, and opening up 

prospects for their use in precision mechanical applications that require transparent, lightweight, and highly 

abrasion-resistant materials. 

MATERIALS AND METHODS 

In this work, polymethyl methacrylate (PMMA) was used as the primary polymer matrix due to its transparency, 

light weight, good chemical stability, and ease of heat molding. The reinforcing material was ordinary nano glass 

waste powders, which is electrically non-conductive and has a particle size ranging from 20 to 60 nm. Nano glass 

waste powders was chosen for its high surface hardness and mechanical resistance to scratching and slipping, 

making it an effective candidate for improving the tribological properties of PMMA polymer. 

The approximate density of PMMA was 1180 Kg/m³, while the density of the nano glass waste powder was 

approximately 2360 Kg/m³. Before mixing, both materials were dried in a pneumatic oven at 60 °C for 2 hours to 

remove moisture and improve homogeneity during mixing. 

Five sets of samples were prepared with a volume fraction of glass powder of 1%, 3%, 5%, 7%, and 9%, in addition 

to a control sample of pure PMMA (0%). The mixture was mixed using ultrasonic sonication at 200 W for 30 

minutes to ensure uniform dispersion of the nano glass waste powders particles within the polymer matrix and 

prevent agglomeration. 

After mixing, the mixture was poured into circular metal molds with a diameter of 10 mm and a length of 30 mm 

according to ASTM G99 - 17. The samples were then left to solidify at room temperature for 24 hours, followed by 

a heat treatment at 80 °C for 3 hours to enhance the interfacial bonding between the particles, nano glass, and 

PMMA. After slow cooling, the surfaces were polished using progressively finer sandpaper (400–1200 grit) to 

achieve a smooth, uniform surface. 

The tests were performed using a Pin-on-Disc Tribometer according to ASTM G99-17, the most widely used 

instrument for studying the tribological behavior of reinforced polymer materials [8]. A constant load of 25 N, a 

sliding time of 15 minutes, and a rotational speed of 120 rpm were assumed. The weight of the samples before and 

after testing was measured using an electronic scale with an accuracy of 0.1 mg. According to the conditions of the 

Pin - on- disc machine the wear rate are calculated according to the following equation [15]:  

 
𝑊𝑟  =   

𝛥𝑊

𝑆𝐷

 
(1) 

 

Where, ΔW: is the wear weight loss of the specimen before and after the wear test (gm). 𝛥𝑊 = 𝑊1 − 𝑊2, W1: weight 

before wear test (gm). W2: weight after wear test (gm). SD: is the sliding distance (cm) which can estimate as[16]: 

 𝑆𝐷 = 𝜋. 𝜃. 𝐷. 𝑡  (2) 
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D: represents the circular sliding diameter (cm). ϴ: denotes the number of revolutions of the revolving disc 

(revolutions per minute).  t: represent the sliding distance duration (seconds). The wear coefficient (Wcoeff ) may be 

used in Archard’s equation[17]:  

 
𝑊𝑐𝑜𝑒𝑓𝑓. =

𝑊ᵥ  .  𝐻ᵥ

𝐿 .  𝑆𝐷

 

 

 (3) 

Archard’s Wear equation correlates the Wear volume Wv with the normal load L, the sliding distance SD, and the 

inverse of hardness HV, via a proportionality constant Wcoeff., often known as the wear coefficient. The specific wear 

rate in(mm3 / N.cm) [18]: 

 𝑊𝑆  =
𝑊ᵥ

 𝐿
       

𝑊𝑉  =
𝑊ᵣ 

𝜌
       

𝑊𝑅 =    
1

𝑊ᵣ
        

(4) 

 

 (5)  

 

(6) 

WV : is the wear volume loss of the specimen before and after the wear test (mm3). WS : the specific wear rate in(mm3 

/ N.cm). HV : Vickers hardness (N / mm2 ) = (MPa), ρ : density of sample (gm / cm3 ), L : normal load applied on the 

sample (Newton) and WR, wear resistance. The sliding velocity (m / s) is evaluated from the relationship[19]: 

 
𝑉𝑆  =   

(𝜋𝐷𝛳)

60
 

 (7) 

 

The coefficient of friction equation [20]: 

 𝝁 =  
𝝉

𝑳 × 𝑺𝑫
     (8) 

Where (𝝉 ) is the friction torque. 

RESULTS AND DISCUSSION 

Table 1 shows that the weight loss ΔW of the nano glass waste powder reinforced polymethyl methacrylate 

composites decreased gradually as the bulk fraction of the filler increased from 0% to 9%, with values decreasing 

from 0.0038 g to 0.0012 g, a reduction of approximately 68%. This improvement is attributed to the increased 

surface hardness of the material resulting from the incorporation of hard nano glass waste powder particles with a 

hardness of approximately 6.5 on the Mohs scale. These particles act as micro-restraints to prevent deformation of 

the matrix during sliding, as noted by Padgurskas et al. in their study on glass composites [7]. It was also found that 

the wear rate WR decreased from 0.017×10⁻³ g/cm to 0.005×10⁻³ g/cm, consistent with what Gu et al.  recorded in 

PMMA/PTFE composites, which showed similar behavior as a result of reducing the direct contact between the two 

surfaces [7]. 

At low percentages (1–3%), the improvement can be explained by the increased ability of the matrix to distribute 

stresses, as the few particles act as load-bearing centers without causing agglomeration, which led to a reduction in 

weight loss of 23% and 45%, respectively. Vuluga et al. confirmed that low nanoparticle loading in PMMA 

improves hardness while maintaining elasticity [1]. At intermediate percentages (5–7%), a thin surface layer 

(tribofilm) of PMMA residue and fine glass particles begins to form, creating a barrier that reduces direct contact 

and lowers both the WR and the coefficient of friction (µ) to 0.031. Abbas et al. explained similar behavior by the 

formation of a soft layer that acts as a solid lubricant on the surface [4]. At a volumetric fraction of 9%, the best 

tribological properties are achieved, with µ reaching 0.029 and WR 0.005 × 10⁻³ g/cm³. This is attributed to the 

homogeneous distribution of particles thanks to sonication, which prevented agglomeration. This was demonstrated 

by Khan et al., who confirmed that ultrasound improves homogeneity and reduces friction by 50% [6]. Sharma and 

Kumar  also demonstrated that the optimal filler ratio is achieved when the effect of increased hardness is balanced 

against the risk of agglomeration [9]. Comparing these results with Farhan et al.'s study of PMMA/TiO2–ZnO 

reveals that the performance of the PMMA/Glass composite continued to improve up to 9%, while deterioration 

began in their study after 5%. This can be explained by the fact that glass is more physically compatible with 

PMMA and does not undergo chemical reactions that weaken the interface between the matrix and the filler [3]. 

Furthermore, the decrease in µ from 0.054 to 0.029 is almost identical to the results of Padgurskas, which 

strengthens the reliability of the experimental method. The improvement in tribological properties can be explained 

both mechanically, by the increased resistance of PMMA to plastic deformation resulting from the presence of solid 

particles that distribute the load uniformly, and superficially, by the formation of a thin protective layer of glass and 
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abrasive polymer that acts as a solid lubricant, limiting direct contact. Thus, PMMA transforms from a conventional 

thermoplastic polymer into an abrasion-resistant engineering material suitable for use in protective lenses and 

precision mechanical parts. 

These results ultimately demonstrate that a 9% nano glass waste powder content achieves the optimal balance 

between hardness, toughness, and dispersion, making the material suitable for precision optical and mechanical 

applications. Further testing at different temperatures and speeds is recommended to determine the maximum 

performance limits. 

TABLE 1. Tribological properties of PMMA/ nano glass waste powder nanocomposites. 

Volume Fraction 

(%) 

ΔW  (g) WR × 10⁻³ 

(g/cm) 

WV × 10⁻² 

(mm³/cm) 

Wcoeff × 

10⁻³ 

µ 

0 % 

(PMMA neat) 

0.0038 0.017 0.015 0.011 0.05

4 

1 % 0.0029 0.013 0.011 0.008 0.04

8 

3 % 0.0021 0.009 0.008 0.005 0.04

1 

5 % 0.0016 0.007 0.006 0.003 0.03

4 

7 % 0.0014 0.006 0.005 0.002 0.03

1 

9 % 0.0012 0.005 0.004 0.001 0.02

9 

CONCLUSIONS 

The results of this research showed that reinforcing polymethyl methacrylate (PMMA) with ordinary nano glass 

waste powder at volumetric ratios ranging from 1% to 9% led to a clear and gradual improvement in wear resistance 

and a reduction in the coefficient of friction under dry-slip conditions. The weight loss decreased from 0.0038 g in 

the pure sample to 0.0012 g at the 9% ratio, while the wear rate decreased to 0.005 × 10⁻³ g/cm³ and the coefficient 

of friction to 0.029. This improved performance is attributed to the increased surface hardness resulting from the 

incorporation of nano glass waste powder particles and their homogeneous distribution within the PMMA matrix. 

This contributed to reducing mechanical deformation and distributing loads even more, in addition to forming a thin 

surface layer that acts as a solid lubricant, reducing direct contact between the two surfaces. The use of ultrasonic 

sonication also contributes to achieving homogeneous nano particles dispersion and preventing agglomeration, thus 

enhancing the interfaith bonding and improving the nanocomposite's efficiency. Therefore, a 9% nano glass waste 

powder content can be considered the optimal ratio for achieving the best tribological performance of PMMA/ nano 

glass waste powder composites in applications requiring high transparency and advanced wear resistance. 
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